
Linear Prediction

I Original application to speech was for data compression
I Factor of about 10
I But data compression is of less interest for speech these

days
I Lives on because the compression method works by

approximating the speech’s spectrum
I Used for

I Finding formants
I Estimating pitch

LInear Prediction

So what is it?

We will call a sequence α of numbers linearly predictable if
each term αn of the sequence can be expressed as the same
linear combination (weighted sum) of previous terms. That is, if
there are coefficients c1, c2, . . . , ck , for some number k , such
that for all n > k

αn = c1αn−1 + c2αn−2 + · · ·+ cnαn−k

or

αn =
k∑

i=1

ciαn−i

Linear Prediction

Recall that
k∑

i=1

ciαn−i

is the expression for the nth term of the
convolution of sequences c and α
So the statement
α is linearly predictable with coefficients c1 . . . ck

is equivalent to
For all n from k + 1 up to length(α) the nth term of
the convolution of α with 1,−c1, . . . ,−ck is equal
to 0.

Linear Prediction
Let’s try it out.
Here is an octave function that constructs linearly predictable
sequences

function predseq=linpred(startseq,coeffs,howmany)
predseq = zeros(1,howmany);
sl = length(startseq);
cl = length(coeffs);
if(sl < cl)

error("Can\’t get started!");
end
predseq(1:sl) = startseq;
cf = fliplr(coeffs);
for j=sl+1:howmany

predseq(j) = cf*predseq(j-cl:j-1)’;
end

end

http://www.ling.upenn.edu/courses/ling525/linpred.m

Linear Prediction

> s1 = linpred([1 2],[2 -1],10)
s1 =

1 2 3 4 5 6 7 8 9
10

> c1=conv(s1,[1 -2 1]);
> c1(3:10)
ans =

0 0 0 0 0 0 0 0

Linear Prediction

> s2=linpred([0 1 4],[3 -3 1],11)
s2 =

0 1 4 9 16 25 36 49
64 81 100

> c2 = conv(s2,[1 -3 3 -1]);
> c2(4:11)
ans =

0 0 0 0 0 0 0 0

Linear Prediction

Ok, but what has this got to do with speech?
Well, we are going to see that

I With lots of hedging...
I Approximately...
I Within limits...
I Over a sufficiently brief interval...
I It can often be useful to pretend that ...

Speech is linearly predictable

Linear Prediction

As a first step, note that sampled sinusoids are linearly
predictable, because

sin((n + 2)× t) = 2× cos(t)× sin((n + 1)× t)− sin(n × t)

From which it follows that a sinusoid with a period of p sample
points can be linearly predicted with the coefficients
2cos(2π/p),−1

Linear Prediction

> s=linpred([0 sin(pi/8)],[2*cos(pi/8) -1],64);
> plot(s,’bo’,sin((0:63)*pi/8),’r+’);

Linear Prediction
An exponentially damped sinusoid is a sinusoid with the nth
sample scaled down by dn, where d is a “damping factor” ≤ 1.

> edamp=0.96.^(0:63);
> plot(edamp,’bo’,s.*edamp,’r);

Linear Prediction
For a damped sinusoid, the prediction coefficients are
2d × cos(2π/p),−d2

> s2=linpred([0 0.96*sin(pi/8)],...
> [2*0.96*cos(pi/8) -0.96^2],64);
> plot(s2,’r+’,s.*edamp,’bo’);

Linear Prediction
A quick look ahead
Here are several pitch periods of a vowel from the timit
sentence sx133.wav.

> plot(sx133(35450:35700))

Linear Prediction

Here is just the first one.

> plot(sx133(35450:35515))

Not exactly a damped sinusoid, but maybe a sum of several?

Linear Prediction

Let’s look at the spectrum of that pitch period.

> spec=log(abs(fft(sx133(35450:35515))));
> plot(spec(2:end/2))

Linear Prediction

The spectrum of a sinusoid is a single spike in the position
corresponding to the frequency of the sinusoid.
The spectrum of a damped sinusoid has a peak in the same
position, but the peak is more spread out.

> spec=log(abs(fft(s)));
> dspec=log(abs(fft(s2)));
> subplot(2,1,1);plot(spec(2:32),’*’);
> title("spectrum of frequency 4 sinusoid")
> subplot(2,1,2);plot(dspec(2:32),’*’);
> title("spectrum of frequency 4 damped sinusoid")

Linear Prediction

Linear Prediction

Linear Prediction

One way of viewing linear prediction is that it tries to
approximate pitch periods as sums of damped sinusoids.

An alternative way is that it tries to approximate the spectrum
as a sum of spectra of damped sinusoids.

For voiced speech, the largest damped sinusoids, or their
spectra, correspond to formants, the high spectral energy
regions that show up as as black bands on spectrograms.

Linear Prediction

File: /home/steve/course/525_16/hw1/SX133.wav Page: 1 of 1 Printed: Tue Feb 16 16:18:36

1

2

3

4

5

6

7

kHz

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

time

Linear Prediction

We know that damped sinusoids are linearly predictable.

How about sums of them?

Back to the math...

Linear Prediction

Remember that convolution of sequences is isomorphic to
multiplication of polynomials

s1 = a0,a1, . . . ,an

s2 = b0,b1, . . . ,bn

s1 ⊗ s2

⇔

⇔

⇔

p1 = a0+a1x+a2x2, . . . ,anxn

p2 = b0+b1x+b2x2, . . . ,bnxn

p1 × p2

where ⊗ stands for convolution

Linear Prediction
The correspondence between sequences and polynomials is
useful enough to have been given a name

The Z Transform

For historical reasons, the variable in the polynomial is written
as z−1.

Z(a0,a1, . . . ,an) = a0 + a1z−1 + · · ·+ anz−n

This doesn’t make any difference to the coefficients that you get
when you multiply two polynomials together.

So
Z(s1 ⊗ s2) = Z(s1)×Z(s2)

or
Z−1(p1)⊗Z−1(p2) = Z−1(p1 × p2)

Linear Prediction

The Z transform applies to infinite sequences as well as finite
ones.
An infinitely long polynomial is called a power series

Z(a0,a1,a2 . . .) = a0 + a1z−1 + a2z−2 + . . .

Multiplication of power series works in the same way as
multiplication of polynomials. That is, the coefficient of z−n in a
product is given by the formula for the nth term of the
corresponding convolution.

Linear Prediction

Recall that we saw earlier that for a finite sequence α, the
statement

α is linearly predictable with coefficients c1 . . . ck

is equivalent to

For all n from k + 1 up to length(α) the nth term of the
convolution of α with 1,−c1, . . . ,−ck is equal to 0.

Linear Prediction

For infinite length α we can drop the restriction that
n ≤ length(α) (because every n is less than length(α)) and say
that

For all n > k the nth term of the convolution of α with
1,−c1, . . . ,−ck is equal to 0.

Or in terms of polynomial multiplication

(α0 + α1z−1 + α2z−2 + . . .)× (1− c1z−1− . . .−ckz−k) = Q

where Q is a polynomial with at most k terms

Linear Prediction

But, in polynomial multiplication and division

(α0 + α1z−1 + α2z−2 + . . .)× (1− c1z−1− . . .−ckz−k) = Q

iff

(α0 + α1z−1 + α2z−2 + . . .) =
Q

1− c1z−1− . . .−ckz−k

Linear Prediction

That is, the αi can be computed by formal long division

For
1

1− 2x + x2 , we get

1 +2x +3x^2

1 - 2x + x^2)1 + 0x + 0x^2 ...
1 - 2x + x^2

2x - x^2
2x - 4x^2 + 2x^3

3x^2 - 2x^3
3x^2 - 6x^3 + 3x^4

.....

Linear Prediction

Or, less laboriously, you could use the octave/matlab filter
function

> filter(1,[1 -2 1],[1 0 0 0])
ans =

1 2 3 4

Linear Prediction

Because (the inverse Z transform of) division by a fixed
polynomial is in fact a linear shift-invariant filter.

Superposition:
c ×Q

P
= c × Q

P
, for any scalar c

Homogeneity:
Q + R

P
=

Q
P

+
R
P

Shift invariance:

Shifting a sequence by by n places corresponds to
multiplication of its Z transform by z−n

z−nQ
P

= z−n Q
P

Linear Prediction

The impulse response of such a filter will not in general be
finite. The long division carries on indefinitely. Therefore these
are called infinite impulse response (IIR) filters, as opposed to
the finite impulse response (FIR) ones that we have seen
previously.

In particular, a sinusoid is the impulse response of a filter with
denominator polynomial 1− 2cos(t)z−1 + z−2, suitably scaled
and shifted, and a damped sinusoid is the impulse response of
one with denominator 1− 2dcos(t) + d2z−2

Linear Prediction

Letting

P1 = 1− 2d1cos(t1)z−1 + d1
2z−2

and
P2 = 1− 2d2cos(t2)z−1 + d2

2z−2

we can see that the sum of the two damped sinusoids

generated by expanding
1

P1
and

1
P2

respectively, can itself be

generated by expanding
P1 + P2

P1P2
.

Linear Prediction

Extending this reasoning, we can conclude that any sum of
damped sinusoids can be generated by polynomial division and
hence that any sum of damped sinusoids is linearly predictable.

Furthermore, by invoking the Fundamental Theorem of Algebra
and partial fraction decomposition, we are going to be able to
turn this around.

Linear Prediction

Theorem (Fundamental Theorem of Algebra)
Any polynomial P (of a variable x) with real number coefficients
and constant term 1, can be factored as a product of terms of
the forms (1 + cx) and (1 + bx + ax2), where a, b and c are
real numbers and the (1 + bx + ax2) terms have no real
number roots, i.e., can’t be factored further into terms with real
number coefficients.

Linear Prediction

Theorem (Partial Fraction Decomposition)
If Q, P1, P2 are polynomials such that P1 and P2 have no
common factors and the highest power in Q is less than the
highest power in P1P2, then

Q
P1P2

=
Q1

P1
+

Q2

P2

where the highest powers in Q1, Q2 are less than the highest
powers in P1, P2 respectively.

Linear Prediction

The conclusion is then that a power series generated as

1
1− c1z−1 − c2z−2 − . . . cnz−n

where the factors satisfy the conditions for partial fraction
decomposition (which turns out to be the case in practice for
speech analysis) is a sum of series of the forms

A
1 + bz−1 and

A + Bz−1

1 + bz−1 + az−2

where the 1 + bz−1 + az−2 quadratics have no real number

roots. The
A

1 + bz−1 series are exponentials. We shall assume

that when they occur in speech analysis they are damped and
we shall largely ignore them here.

Linear Prediction

What about the
A + Bz−1

1 + bz−1 + az−2 series?

Well, the quadratic formula tells us that the (by assumption
non-real) roots of 1 + bz−1 + az−2 are

−b ±
√

b2 − 4a
2a

If b2 were ≥ 4a, the roots would be real. Hence b2 < 4a.

Linear Prediction

Let d =
√

a and c =
b

2d
.

So b = 2dc.
Then

1 + bz−1 + az−2 = 1 + 2dcz−1 + d2z−2

Since b2 < 4a
|b| < 2

√
a = 2d

and
|c| = | b

2d
| < 1

Since every number between −1 and 1 is the cosine of some
angle, we can write

c = −cos(θ)

for some angle θ

Linear Prediction

Therefore

1 + bz−1 + az−2 = 1− 2dcos(θ)z−1 + d2z−2

for some angle θ and damping factor d , and
Az−1 + B

1 + bz−1 + az−2

is the Z transform of a sum of two damped sinusoids with
period 2π/θ and damping factor d .

Linear Prediction

The usual way of characterizing these damped sinusoids is not
to consider the quadratic factors of the original polynomial
1− c1z−1 · · · − cnz−n, but to look at the complex roots obtained
by factoring the polynomial completely.
The quadratic formula tells us that the roots of

1− 2dcos(θ)z−1 + d2z−2

are

z−1 =
2dcos(θ)±

√
4d2cos2(θ)− 4d2

2d2

=
cos(θ)±

√
cos2(θ)− 1

d
=

cos(θ)± isin(θ)

d

=
e±iθ

d

Linear Prediction
Since 1/eiθ = e−iθ, the corresponding values for z itself are the
complex conjugate pair de±iθ

cos(Θ) + isin(Θ)

cos(Θ) Θ)− isin(

Θ

−Θ

d

d

d()

d()

cos(Θ) + isin(Θ)

cos(Θ) Θ)− isin(

Θ

−Θ

d

d

d()

d()

Linear Prediction

A quotient
Q(z−1)

P(z−1)
is undefined at points where the

denominator P(z−1) is equal to zero, i.e., at the roots of P.
These are referred to as poles of the quotient. (The use of the
term pole in mathematics derives from the history of map
making.)

Linear Prediction

The angle of a pole determines the period of the corresponding
damped sinusoid

A pole at angle θ corresponds to a sinusoid that

repeats every
2π
θ

sample points.

So the greater the angle, the higher the frequency
of the sinusoid.

The distance of a pole from the origin determines the rate at
which sinusoid dies away.

A pole near the origin gives rise to a sinusoid that
dies away quickly.
A pole near the unit circle gives rise to a sinusoid
that dies away slowly.

Linear Prediction

Linear Prediction

Note that there is nothing in the mathematics we have seen to
prevent poles from lying outside the unit circle, that is, having a
d value > 1. When this happens in speech analysis, it indicates
a breakdown of the model of speech production on which linear
predictive analysis is based. There are various methods of
computing prediction coefficients to prevent this happening and
of coping when it does. We won’t go into them here, but you
should remember that the model is not perfect.

Linear Prediction

What is the model?

The physics of tube resonators suggests that speech
production can be idealized as passing either a series of
isolated pulses (in voiced speech) or white noise (in frication)
through a filter with an impulse response whose Z transform is

of the form
1

1− c1z−1 − c2z−2 · · · − cnz−n

In the case of pulses, most samples should be linearly
predictable from previous ones, although not the pulses
themselves, which come from outside the filter.

In the case of white noise, prediction should always be slightly
wrong, but by about the same amount all the time.

Linear Prediction

Either way, we are looking for a set of coefficients that minimize
the total error. That is what linear predictive analysis does. It
looks for c1, c2, . . . cn such that

sk = c1sk−1 + c2sk−2 + · · ·+ cks0

sk+1 = c1sk + c2sk−1 + · · ·+ cks1

. . .

. . .

sN = c1sN−1 + c2sN−2 + · · ·+ cksN−k

Linear Prediction

But these are N equations in k unknowns, where N is typically
much larger than k and there is no perfect solution. So we
make do with the cj that give the best least squares fit.

Linear Prediction

Let’s try it on an example
Here are three pitch periods from the /i/ vowel in the “ri” syllable
of “pizzeria” in SX133.wav.

> pp3=sx133(16107:16243);
> plot(pp3);

Linear Prediction
And its spectrum

> spec=fft(pp3,256);
> plot((1:127)*8000/127,log(abs(spec(2:128))));

Linear Prediction

Now

> k=18; %number of prediction coefficients
> m=zeros(length(pp3)-k,k);
> for j=0:length(pp3)-(k+1)
> m(j+1,:)=pp3(j+k:-1:j+1); % k samples

before sample j, in reverse order
> end
> c=pinv(m)*pp3(k+1:end); % least squares

solution to m*c=pp3(k+1:end)
> rts=roots([1; -c]);

Linear Prediction

> an=angle(rts);
> [an ind] = sort(an);
> rts=rts(ind); % sort roots in order of

increasing angle
> an=an*8000/pi; %convert angles to frequencies
> pos=(an>0);
> an(pos)(1:5)’ %first 5 positive roots
ans =

338.21 1008.96 2386.85 3012.02 3660.20
> abs(rts(pos)(1:5))’ % and their distance

from the origin
ans =

0.98134 0.83831 0.97737 0.93445 0.95862

Linear Prediction

Not all of the poles are formants, but the ones close to the unit
circle are.

Linear Prediction

We might want to see not just pole locations, but the entire
linear prediction spectrum, i.e., the spectrum of the filter’s
impulse response. That spectrum is obtained by a
mathematical maneuver that at first encounter might look a bit
like sleight of hand.

First of all, the impulse responses of interest are infinite, so we
need to decide what we mean by the spectrum of an infinite
sequence.

Well, for any given N, the dft of the first N elements of the
sequence is defined for all frequencies up to N/2. If the dfts
approach a limit at each frequency f as N →∞, it seems
reasonable to adopt that limit for the value of the spectrum at f ,
for whatever range of frequencies f we are interested in.

Linear Prediction

It may be easiest to think about what is going on here in terms
of the sine/cosine version of the dft. The frequency f term is
computed by taking the inner product of the sequence with a
sine and a cosine of frequency f .

Linear Prediction

N N+k

Inner product for frequency f term of dft

Input to dft

Frequency f sinusoid

Linear Prediction

As the damped input approaches 0, the difference in inner
products for N and N + k will get smaller. And of course this
applies to the real and imaginary parts of the complex
exponential version of the dft as well.

But wait...
What is this frequency f you are talking about?
There is no f in the definition we have seen of the dft.

Linear Prediction

The dft formula

Xk =
N−1∑
n=0

xne−i(2π/N)kn

gives us a spectral value for each number k from 0 to N − 1.

But k is a frequency with respect to N. It is the number of times
that the complex exponential e−i(2π/N)kn repeats over N
samples. It is not a frequency in terms of samples per second,
or dots per inch in a spatial domain.

Linear Prediction

If we have a speech wave sampled at 16 kHz (16000 samples
per second) and we take the dft of 256 points, 2 kHz will be
represented by the 32nd component of the dft, but if we take
the dft of 128 sample points, 2 kHz will be represented by the
16th component.

What we want here is for the dft values corresponding to a
given “absolute” frequency (really one relative to sampling
frequency) to converge as we take longer and longer dfts.

Linear Prediction

In the dft, the kHz frequency f that we want is related to k , N
and sf , the sampling frequency by

f =
k
N

sf or
f
sf

=
k
N

So the dft formula can be rewritten

Xf =
N−1∑
n=0

xne−i(2πf/sf)n

for f from 0 to
N − 1

N
sf in steps of

sf
N

Linear Prediction

However, there is nothing to prevent us using the formula for Xf
to obtain spectral values for “in between” frequencies f that are

not multiples of
sf
N

, which is what we shall do.

That amounts to abandoning the dft for the discrete
time/continuous frequency version of the fourier transform, but

the two agree when f is chosen as k
sf
N

for some k between 0
and N − 1.

Now comes the sleight of hand...

Linear Prediction

Up to this point, we have been treating the powers of the
variable z just as placeholders to help keep track of terms in
convolution. But now we consider what happens if we substitute
ei(2πf/sf) for z in the Z transform of the sequence a1,a2, . . .

a0 + a1e−i(2πf/sf)×1 + a2e−i(2πf/sf)×2 + · · · =
∞∑

n=0

ane−i(2πf/sf)n

which we have just seen is the value of the spectrum of the
sequence at frequency f (as long as the sum approaches a
limit).

Linear Prediction

That’s all very well, but how do we actually find the limit of the
infinite series?
We use the fact that

∞∑
n=0

anz−n =
1

1− c1z−1 − c2z−2 · · · − ckz−k

if the series converges.
So to calculate the spectral value for a particular f we simply
plug ei(2πf/sf) in for z in the denominator polynomial and divide
1 by the result!

(Having all of the poles inside the unit circle is a sufficient
condition for the series to converge.)

Linear Prediction

This can be done for whatever values of f we choose, but to
display a spectrum, we would typically want to calculate the
spectrum at a number of evenly spaced values, N multiples of
some basic frequency f0.

1−
k∑

n=1

cne−i(2πf0/sf),1−
k∑

n=1

cne−i(2πf0/sf)×2, . . . ,1−
k∑

n=1

cne−i(2πf0/sf)×N

But these are the terms of an N point dft of 1,−c1, . . . ,−ck !

Linear Prediction

> lpspec=1./fft([1; -c],256);
> a=max(log(abs(spec)))/max(log(abs(lpspec)));
> %scale to same height
> plot((1:127)*8000/127,log(abs(spec(2:128))),...
> (1:127)*8000/127,a*log(abs(lpspec(2:128))),’r’)

Linear Prediction

Our model of speech production says that the speech spectrum
(in blue), is the result of filtering (convolving) some source with
the filter whose spectrum is shown in red. We know that the dft
of the convolution of two vectors is the pointwise product of the
dfts of the vectors.

Linear Prediction

Since the display is actually of logs of spectra, the blue line
should be the sum of the red with the log spectrum of the
source.

How do we find the source?

Linear Prediction

Well convolving the source S with the filter whose impulse
response is

Z−1(
1

1− c1z−1, · · · − ckz−k)

is supposed to yield the observed speech data D.

That is

D = conv(S,Z−1(
1

1− c1z−1, · · · − ckz−k))

or
Z(D) = Z(S)× 1

1− c1z−1, · · · − ckz−k

Linear Prediction

Multiplying both sides by
1

1− c1z−1, · · · − ckz−k and taking

inverse Z transforms, we see that S can be obtained by
convolving D with 1− c1z−1, · · · − ckz−k .

Now recall that if a sequence is linearly predictable by
c1, . . . , ck , then the convolution of the sequence with
1− c1 · · · − ck will be 0 after the first k terms, and we computed
a vector c that gave the best least squares fit to linearly
predicting the segment pp3 = sx133(16107:16243).

Convolving with [1;−c] is referred to as “inverse filtering” and
the result is often referred to as the error sequence or
prediction residual.

Linear Prediction

> resid=filter([1; -c],1,pp3);
> subplot(2,1,1);plot(pp3(19:end))
> subplot(2,1,2);plot(resid(19:end))

Linear Prediction
> pp3new=filter(1,[1;-c],resid);
> figure;subplot(2,1,1);plot(pp3);title("pp3")
> subplot(2,1,2);plot(pp3new);title("pp3new")

0 20 40 60 80 100 120 140
-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140
-0.4

-0.2

0

0.2

0.4

0.6

0.8

pp3new

pp3

> max(abs(pp3-pp3new))
ans = 0

Linear Prediction

Note that this tells us nothing about speech, or about how
successful our model of it is. It is a simple consequence of the
fact that when you multiply and divide by the same polynomial,
you get back to where you started.

Reconstruction of the spectrum is not quite as perfect because
of edge effects in convolution.

Linear Prediction
> residspec=fft(resid(19:end),256);
> figure;
> subplot(3,1,1);

plot(plot(log(abs(1./fft(poly3,256)(2:128)))
> subplot(3,1,2);plot(log(abs(residspec)(2:128)))
> subplot(3,1,3);plot(log(abs(fft(pp3,256))(2:128)))

Linear Prediction

0 20 40 60 80 100 120 140
-8

-6

-4

-2

0

2

4

Artificial Speech

Waveform manipulation

> pp1=pp3(43:95);
> pp1x25=repmat(pp1,25,1);

Artificial Speech

> fall=pp1;
> for j=1:25
> fall=[fall; pp1; zeros(2*j,1)];
> end

Manipulating Source and Filter

Create some artificial source . . .

> buzz=repmat([1;zeros(52,1)],25,1);
> resid1=resid(43:95);
> resid1x25=repmat(resid1,25,1);

Manipulating Source and Filter

> fallresid=resid1;
> for j=1:25
> fallresid=[fallresid; resid1; zeros(2*j,1)];
> end

Manipulating Source and Filter

And filter it
I with the original filter

> newfall=filter(1,[1; -c],fallresid);

Manipulating Source and Filter

And filter it
I with a different filter

Recall

> real(angle(rts))’*8000/pi
ans =
Columns 1 through 8:
6933.75 -6933.75 5724.06 -5724.06 4272.88

-4272.88 3660.20
-3660.20

Columns 9 through 16:
3012.02 -3012.02 2386.85 -2386.85 338.21
-338.21 1008.96 -1008.96

Columns 17 and 18:
3918.37 -3918.37

Roots 11,12 correspond to F2 and roots 13,14 to F1

Manipulating Source and Filter
A new prediction polynomial based on F1=600, F2=1900

> a11=abs(rts(11))
a11 = 0.97737
> a13=abs(rts(13))
a13 = 0.98134

> newrts(11)=a11*(cos(1900*pi/8000)
> +i*sin(1900*pi/8000));
> newrts(12)=newrts(11)’;
> newrts(13)=a13*(cos(600*pi/8000)
> +i*sin(250*pi/8000));
> newrts(14)=newrts(13)’
> newpoly=1;
> for j=1:length(newrts)
> newpoly=conv(newpoly,[1 -newrts(j)]);
> end

Manipulating Source and Filter

And filter with it

> newvowel=filter(1,newpoly,fallresid);

Manipulating Source and Filter

Make a diphthong by having the filter change over time

> % start with a longer residual
> fallresid=resid1;
> for j=1:50
> fallresid=[fallresid; res1; zeros(j,1)];
> end

> % create a series of values for F1 and F2
> f1s=linspace(600,250,length(fallresid));
> f2s=linspace(950,2500,length(fallresid));
>
> % start the diphthong with the first 18 frames
> % of newvowel
> diphth=zeros(length(fallresid)+18,1);
> diphth(1:18)=newvowel(1:18);

Manipulating Source and Filter

> newrts=rts;
>
> % compute the rest of the diphthong
> for j=1:length(fallresid)
> % make a new prediction polynomial for
> % each sample of the diphthong
>
> % first change the roots corresponding to
> % F1 and F2
> newrts(11)=a11*(cos(f2s(j)*pi/8000)
> +i*sin(f2s(j)*pi/8000));
> newrts(12)=newrts(11)’;
> newrts(13)=a13*(cos(f1s(j)*pi/8000)
> +i*sin(f1s(j)*pi/8000));
> newrts(14)=newrts(13)’;

Manipulating Source and Filter

> % multiply to make the polynomial
> newpoly=1;
> for k=1:length(newrts)
> newpoly=conv(newpoly,[1 -newrts(k)]);
> end;
>
> % predict the next sample point
> newcoeffs=-real(newpoly(2:end));
> diphth(j+18)=
> newcoeffs*diphth(j+17:-1:j)+fallresid(j);
> end

Manipulating Source and Filter

> function wav = taper(wav);
> % make the wave begin and end gradually
> if(length(wav) < 320)
> error("Input is too short!");
> end
> rampup = reshape((1:160),
> size(wav(1:160)))/160;
> rampdown = reshape((160:-1:1),
> size(wav(1:160)))/160;
> wav(1:160) .*= rampup;
> wav(end-159:end) .*= rampdown;
> end
>
> diphth=taper(diphth);

