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Deterministic vs. Non-Deterministic FSA 
Ling 106 

October 1, 2003 
 

1. Formal Definition of A Deterministic Finite State 
Automaton 
 
Definition 1.1 
 
A final state automaton is a 5-tuple <Q, Σ, δ, q0, F>, where: 

1. Q is a finite set of states; 
2. Σ is a finite set called the alphabet, 
3. δ: Q x Σ -> Q is the transition function, 
4. q0 є Q is the start state, 
5. F⊆Q is the set of accept states. 
 

Questions: 
Can finite state machines have more than one accept states? 
Can they have zero number of accept states? 
Given the definition 1.1 of deterministic FSA, must there be exactly one transition arrow 
exiting every state for each possible input symbol? 
 
For example, consider the state diagram of the automaton M1: 
 

 
 
We can describe M1 formally by writing M=<Q, Σ, δ, q0, F>, where 
 
1. Q={q0, q1, q2}, 
2. Σ = {0, 1} 
3. δ is defined as  
 
 0 1 
q0 q0 q1 
q1 q2 q1 
q2 q1 q1 
 

qo q2 q1 

0 1

1 0 

0, 1
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4. q0 is the start state, 
5. F={q1}. 
 
Question. 
Given the formal description of finite state automaton M2 below, draw a corresponding 
state diagram for M2. 
 
M2 = <Q, Σ, δ, q0, F>, where 
1. Q={q0, q1}, 
2. Σ = {0, 1} 
3. δ is defined as  
 
 0 1 
q0 q0 q1 
q1 q0 q1 
 
4. q0 is the start state, 
5. F={q1}. 
 
Which of the following strings are accepted by M2? 
a. 0 
b. 1 
c. 00 
d. 11111 
e. 1000000 
f. 1010011 
g. ε 
 
Question. 
Consider the state diagram of finite state automaton M3, and give a formal description of  
M3. 
 

 
 
M2 = <Q, Σ, δ, q0, F>, where 
1. Q= 
2. Σ =  

q1 q0 

0

1

0 

1
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3. δ is defined as  
 
 0 1 
q0   
q1   
 
4. The start state is 
5. F= 
 
Which of the following strings are accepted by M3? 
 
a. 0 
b. 1 
c. 00 
d. 11111 
e. 1000000 
f. 1010011 
g. ε 
 
 
2. The Language of a FSA 
 
Let M denote a finite state automaton and w denote a string of symbols: 
 
The language of a machine M, written as L(M), is the set of all strings that machine M 
accepts. 
For example, L(M1) ={w | w ends with a 1} 
Let A be L(M). We say that M recognizes A or that M accepts A. 
The string w is in the language accepted by M, wєL(M), if and only if M reads w 
entirely and halts in a final state of M. 
A machine may accept several strings, but it always recognizes only one language. 
If the machine accepts no strings, it still recognizes one language, namely, the empty 
language, written as  ∅. 
 
A language is regular if and only if there exists a finite state automaton that recognizes 
it. That is if we claim that a language is a regular language, we must be able to back up 
our claim by producing a finite state automaton that recognizes the language. 
 
Question. 
Show that the following languages are regular. That is, for each of these languages, give a 
FSA diagram that accepts all and only the strings in that language. Assume Σ={0, 1}. 
 
a. {w: w contains at least three 1s} 
b. {w: w begins with 1 and ends with 0} 
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3. The Regular Operations 
 
Definition 1.2 
Let A and B be languages (with the same alphabet  Σ). We define the regular operations 
union, intersection, concatenation, and star as follows. 
 

- Union: A∪B={x | xєA or xєB} 
- Intersection: A∩B= {x | xєA and xєB} 
- Concatenation: AoB={xy | xєA or xєB} 
- Star: A*= {x1x2x3…xk| k≥0 and each xiєA} 

A* is the set formed by concatenating members of A together any number of times 
(including zero) in any order and allowing repetitions. 

 
Examples 
Let the alphabet Σ be the standard 26 letters {a, b, c, … z}. If A={good, bad} and 
B={boy, girl}, then 
A∪B={good, bad, girl, boy} 
A∩B=∅ 
AoB={goodboy, goodgirl, badboy, badgirl} 
A*= {ε, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood,goodgoodbad, 
goodbadgood, badgoodgood, badbadbadbad, badbadbadgood, ….} 
 
Note that the empty string ε is always a member of A*, no matter what A is! 
 
Question 
Let C= {apple, banana, pear} and D={grape, banana}. 
C∪D= 
C∩D= 
CoD= 
D*= 
 
Properties of regular languages 
 
Theorem 1.1 
The class of regular languages is closed under the union operation 
That is, if A and B are regular languages, then A∪B is also a regular language 
 
Theorem 1.2 
The class of regular languages is closed under the intersection operation 
That is, if A and B are regular languages, then A∩B is also a regular language 
 
Theorem 1.3 
The class of regular languages is closed under the concatenation operation 
That is, if A and B are regular languages, then AoB is also a regular language. 
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0, ε 

Theorem 1.4 
The class of regular languages is closed under the star operation 
That is, if A is a regular language, then A* is also a regular language. 
 
4. Characteristics of Nondeterministic Finite State 
Automata 
 
Every state of a deterministic finite state automaton (DFA) always has exactly one 
exiting transition arrow for each symbol in the alphabet. That is, in a DFA, the transition 
function is a true function. This means that there was never any choice about what to do 
at any step in the computation. 
e.g. δ(q0, a)=q1 
But in a nondeterministic finite state automaton (NFA), a state may have zero, one, or 
many exiting arrows for each alphabet symbol. That is, we can think of the transition 
function of NFA as retuning not a unique state, but a set of states, including the empty 
set. 
e.g. δ(q0, a)={q0, q1} 
 
Consider the machine below called N1. 
 
 

 
 
 

 
 
 
 

 
 
Things to note 
 

- Because the transition arrow from q1 to q2 is labeled with the empty string and a 
0, the machine can move from state q1 to state q2 either by scanning 0 or simply 
by ‘jumping’ from q1 to q2. 

- If the machine read a 1 in a state q0, it can either remain in q0 or it can move to 
state q2. 

- In state q1, there is no exiting arrow for 1, and in state q2, there is no exiting 
arrow for 0. 

 
Example computation 
 
Does the above machine N1 accept 010110? 
 
1. We start at q0 and we read the first symbol in the string    0.10110 
2. We remain in state q0 and move to the next symbol   01.0110 

q0 
S1
q1 q3q2

0, 1 
0, 1 

1
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3. We are now faced with two options. We ‘copy’ the machine and let each copy carry on 
the computation. 
Copy-1: stays in q0; 
Copy-2: moves to q1. 
4. An empty string exits state q1, so the machine makes another copy. 
Copy-1: stays in q0. 
Copy-2: moves to q1. 
Copy-3: moves to q2. 
5. We move to the next symbol in the input string:   010.110 
Copy-1: stays in q0. 
Copy-2: moves to q2. 
Copy-3: dies. 
6. We now scan the fourth symbol in the string:  0101.10 
This is ambiguous for copy-1, so it generates a new copy 
Copy-1: stays in q0. 
Copy-4: moves to q1. 
Copy-2: moves to q3. 
7. An empty string exits state q1, so copy-4 makes another copy. 
Copy-1: stays in q0. 
Copy-4: moves to q1. 
Copy-5: moves to q2. 
Copy-2: moves to q3. 
8. Next we look at the fifth symbol in the string:  01011.0 
This is ambiguous for copy-1, so it generates a new copy: 
Copy-1: stays in q0. 
Copy-6: moves to q1. 
Copy-4: dies 
Copy-5: moves to q3. 
Copy-2: stays in q3. 
9. An empty string exists state q1, so copy06 makes another copy. 
Copy-1: stays in q0. 
Copy-6: stays in q1. 
Copy-7: moves to q2. 
Copy-5: stays in q3. 
Copy-2: stays in q3. 
10. Since copy-5 and copy-2 are in the same state, the two copies collapse into one. 
Copy-1: stays in q0. 
Copy-6: stays in q1. 
Copy-7: moves to q2. 
Copy-2: stays in q3. 
11. Now we scan the last symbol in the string:  010110. 
Copy-1: stays in q0. 
Copy-6: moves to q2. 
Copy-7: dies. 
Copy-2: stays in q3. 
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0, 1 

We’ve reached the end of the string, so we check to see if any of the copies are in an 
accepting state. Since copy-2 is in q3, which is an accepting state, we can conclude that 
the machine N1 accepts the string. 
 
Question: Which of the following strings does the above machine N1 accept? 
a. 1011 
b. 101010 
c. 000001 
d. 1100101 
 
Questions: What strings does the following NFA accept?  
 
 

 
 
 

 
 
 

 
 
 
5. Formal Definition of NFA 
 
Definition 1.2 
A nondeterministic finite state automaton is a 5-tuple <Q, Σ, δ, q0, F>, where: 

1. Q is a finite set of states; 
2. Σ is a finite set called the alphabet, 
3. δ: Q x (Σ∪{ε}) -> ℘(Q) is the transition function, 
4. q0 є Q is the start state, 
5. F⊆Q is the set of accept states. 

 
We can describe N1 formally by writing N1=<Q, Σ, δ, q0, F>, where 
 
1. Q={q0, q1, q2}, 
2. Σ = {0, 1} 
3. δ is defined as  
 
 0 1 ε 
q0 {q0} {q0,q1} ∅ 
q1 {q2} ∅ {q2} 
q2 ∅ {q3} ∅ 
q3 {q3} {q3} ∅ 
 
4. q0 is the start state, 

q0 
S1
q1 q3q2

0, 1 

0, 1 
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0, 1, ε 0, 1, ε 

a 

a,b 

b 

5. F={q3}. 
 
Question 
Give a formal description of the following machine N2. 
 

 
 
 

 
 
 
 

 
What strings does the machine N2 accept? 
 
5. Equivalence of NFAs and DFAs 
 
We say that two machines are EQUIVALENT if they recognize the same language.  
It can be shown that for any NFA there is an equivalent DFA – equivalent in the sense 
that both accept the same set of strings. 
A DFA typically has more states that an NFA to which it is equivalent. The DFA works 
by keeping track of the set of states that the NFA could be in if followed all possible 
paths simultaneously on a given input. 
 
Extra exercises. 
 
Exercise 1. Consider the state diagram for deterministic finite state automaton M4, and 
give a formal description of M4. 
 
 
 

 
 
 

 
 
 
 
 
Which of the following strings does M4 accept? 
a. aabb 
b. abaab 
c. bbbba 
d. baaba 
e. aabaa 
f. ε 

q0 
S1
q1 q3q2

0, 1 

q1 

a q2

q3 

b 
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q1 q2

0 

0  

ε

0q3 q4

q5 0

0

ε q0 

g. ba 
h. a 
i. aaaaa 
j. abaa 
 
Exercise 2. 
For each of the following languages, give a FSA that recognizes it. Assume Σ={1, 0}. 
a. {w | w contains exactly three 1s(and any number of 0s)} 
b. {w: w has an odd length} 
c. {1} 
d. {w: w contains the substring 111} 
e. {w: the length of w is a multiple of 3} 
 
 
Exercise 3.  
 
Give a formal description of the following nondeterministic machine N3. 
 
 
 
 
 


