
The Kernel Trick

There are a lot of good presentations of the kernel trick
available online. Most of them present it in the context of
Support Vector Machines (SVMs), SVMs and the kernel trick
are both advances on basic perceptrons and historically came
into wide use at the same time. In fact, there probably are not
many applications for which one would want to use the kernel
trick with an ordinary perceptron rather than an SVM.

However, the idea - the trick - doesn’t require the extra
complication of SVMs and so this presentation leaves them out.

One excellent online exposition that goes more deeply into the
math than these notes do is:

https://ocw.mit.edu/courses/sloan-school-of-management/15-
097-prediction-machine-learning-and-statistics-spring-
2012/lecture-notes/MIT15_097S12_lec13.pdf

The Kernel Trick

OUTLINE

Limitation: Perceptrons are linear

Partial fix:

Linear isn’t the same in all spaces

Compute linear operations in space B using non-linear
operations in space A to get non-linear boundary in
space A

Historical note

Perceptrons

Inner products are the key operation

Points are classified by taking an inner product with the weight
vector w and comparing with a threshold.

And in the perceptron learning algorithm, all operations on
points in the space can be characterized as inner products.

Perceptrons

Two suggestions for extensions of the perceptron idea that get
us to the same place in the end:

Map the points to another space, e.g., polar coordinates,
and learn a perceptron there.

Replace inner products by another function that still
permits the proof of the learning algorithm to go through.

Lines in polar coordinate space
20 points on the “line” r = θ plotted in x,y coordinates

Polar coordinates
20 points on the “line” r = 1

Polar coordinates
20 points on the “line” θ = π/4

So if we thought that two classes of x,y points could be
separated by a polar coordinate “line”, we could map the points
to polar coordinates and train a perceptron on the polar
coordinate version of the two classes.

This would involve taking a lot of polar coordinate inner
products, the product of the radii plus the product of the angles,
a weird sort of operation in rectangular coordinate space.

Instead of choosing a promising looking space and mapping
the original data there, the kernel trick stays in the original
space and works with a promising looking substitute for the
inner product, a kernel.

Kernels are “inner product-like” functions that are guaranteed to
correspond to actual inner products in some space, although
we often don’t know, or care, what that space is.

The XOR problem

No way to draw a line that puts both blue points on one side
and both red points on the other side.

The XOR problem

We want to distinguish the case where the two inputs are
different from the case where they are the same.

Subtracting one from the other, gives 0 if they are the same,
and non-0 if they are different, which is a start. And furthermore
subtraction can be performed by taking the inner product with
< 1,−1 >.

The trouble is that the non-0 values are 1 and −1, which can’t
both be on the same side of a threshold that puts 0 on the other
side.

Of course if we squared the inner product with < 1,−1 >, then
the two cases where the inputs are different would both yield 1,
and any threshold between 0 and 1 would distinguish the two
cases.

The XOR problem

But then we don’t have a perceptron anymore.

Or do we?

The XOR problem

Consider the mapping from 2-D space to 3-D space that maps
< x , y > 7→ < x2,−

√
2xy , y2 >

So
< 0,0 > 7→ < 0,0,0 >
< 0,1 > 7→ < 0,0,1 >
< 1,0 > 7→ < 1,0,0 >
< 1,1 > 7→ < 1,−

√
2,1 >

The XOR problem

Taking inner products with the 3-D vector w = < 1,
√

2,1 >, we
get

w · < 0,0,0 >= 0
w · < 0,0,1 >= 1
w · < 1,0,0 >= 1
w · < 1,−

√
2,1 >= 0

So w and any threshold between 0 and 1 will compute (the 3-D
version of) XOR, and a 3-D perceptron could learn to do it.

The XOR Problem
Taking, say, 1/4 as threshold, doing a little algebra, and
mapping back to 2-D, we find, not surprisingly, that the 3-D
computation amounts to (x − y)2 > 1/4 or |x − y | > 1/2, which
looks like:

The Trick - Staying in 2-D

But so far this isn’t different from the polar coordinate case
(except that polar coordinates don’t help with XOR). We move
to a new space and do perceptron learning there, taking inner
products in the new space.

But in fact, we don’t have to move to the 3-D space, we just
have to know that it is there.

The 3-D inner product

< x2,−
√

2xy , y2 > · < z2,−
√

2zw ,w2 >
is

x2z2 + 2xyzw + y2w2 = (xz + yw)2 = (< x , y > · < z,w >)2

The Trick - Staying in 2-D

That means that we can carry out all the perceptron operations
in 2-D, but replacing inner product with its square, knowing that
it will work because what we are doing is equivalent to working
with actual inner products in the 3-D space.

So is there something special about squaring, or are there
other inner product replacements that will work as well?

Kernels

There is class of functions, called (positive definite, or p.d.)
kernels, any of which will work as replacements for the inner
product in this way because they are inner products in some
other space.

The definition, which is often hard to apply in practice, is:

A function K (x , y) is a (p.d.) kernel iff

K is symmetric: K (x , y) = K (y , x) (which is easy)
K is positive definite (which is not)

Positive Definiteness

A function K from pairs of vectors to real numbers is positive
definite iff:

For any set of vectors vi in the space, the Gram matrix G, where

Gi,j = K (vi , vj)

is positive definite.

Uh huh

Positive Definiteness

A symmetric nxn matrix M is positive definite iff:

For any non-zero length n vector u,

uT Mu > 0

We can see that uT Mv is an "inner product-like" operation
because, with symmetric M, it is symmetric, and it is linear in its
arguments

(a1u1 + a2u2)
T Mv = a1(uT

1 Mv) + a2(uT
2 Mv)

But, better still:

Positive Definiteness

Theorem: A positive definite matrix has all positive eigenvalues

Therefore M has a decomposition

M = USU−1 = (
√

SU−1)T
√

SU−1

where U is orthonormal and the diagonal matrix S has all
positive entries on its diagonal.

Positive Definiteness

So:

Setting
V =

√
SU−1

We have
M = V T V
uT Mv = uT V T Vv = (Vu)T Vv

So uT Mv is actually an inner product in the space defined by
the change of basis V .

Getting back to kernels, this gives (I hope) some insight into
why they compute inner products.

Back to Kernels

Although the definition of a kernel is hard to use directly in
deciding whether a given function is a kernel, or trying to
construct a new kernel, there are some helpful theorems that
let us generate new kernels from ones we already have:

(Thanks to Wikipedia for help in formatting the math)

New Kernels from Old

For p.d. kernels (Ki)i∈N,
The sum

∑n
i=1 λiKi is p.d., given λ1, . . . , λn ≥ 0

The product K a1
1 . . .K an

n is p.d., given a1, . . . ,an ∈ N

The limit K = limn→∞ Kn is p.d. if the limit exists.

If (Xi)
n
i=1 is a sequence of sets, and (Ki)

n
i=1, a sequence of p.d.

kernels, then both

K ((x1, . . . , xn), (y1, . . . , yn)) =
∏n

i=1 Ki(xi , yi)
and
K ((x1, . . . , xn), (y1, . . . , yn)) =

∑n
i=1 Ki(xi , yi)

are p.d. kernels on X = X1 × · · · × Xn.

Let X0 ⊂ X . Then the restriction K0 of K to X0 ×X0 is also a
p.d. kernel.

Some Example Kernels

Linear kernel: K (x , y) = xT y , x , y ∈ Rd .

Polynomial kernel: K (x , y) = (xT y + r)n, x , y ∈ Rd , r >= 0.

Gaussian kernel (Radial basis function kernel|RBF Kernel):

K (x , y) = e−
‖x−y‖2

2σ2 , x , y ∈ Rd , σ > 0.

Laplacian kernel: K (x , y) = e−α‖x−y‖, x , y ∈ Rd , α > 0.

The spaces in which these kernels compute the inner product
are not necessarily finite dimensional, so that computing the
inner product in the space itself might not be feasible.

Nor is it necessarily simple to describe what the space
corresponding to a given kernel is. See, e.g., Ingo Steinwart,
Don Hush, and Clint Scovel "An explicit description of the
reproducing kernel Hilbert spaces of Gaussian RBF kernels"
(2005)
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.99.107&
rep=rep1&type=pdf

The inner product can be thought of as a similarity measure. It
is proportional to the angle between two vectors and is largest
when the angle is 0. Rather than trying to understand the
space that a kernel maps to, it is probably more enlightening to
consider what points are made similar under a given kernel and
what sort of contour K (v ,w) > θ gives for fixed w and θ.

When K is the inner product, K (v ,w) > θ gives points on one
side of a hyperplane normal to w .

When K is the RBF kernel, K (v ,w) > θ gives points outside of
a hypersphere around w .

Historical Note

The basis of the kernel trick appeared, in English translation, in

Aizerman, M. A.; Braverman, Emmanuel M.; Rozoner, L. I.
(1964). "Theoretical foundations of the potential function
method in pattern recognition learning". Automation and
Remote Control. 25: 821-837

five years before the publication of Minsky and Papert’s
Perceptrons.

Automation and Remote Control is a translation of the Russian
journal Avtomatika i Telemekhanika, from the Russian
Academy of Sciences.

So it was known in 1969, in Russia at least, that perceptrons
are not restricted to performing linear separation in the space in
which the data points are presented.

