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Abstract. Large databases of linguistic annotations are used for testing lin-
guistic hypotheses and for training language processing models. These linguis-
tic annotations are often syntactic or prosodic in nature, and have a hierar-
chical structure. Query languages are used to select particular structures of
interest, or to project out large slices of a corpus for external analysis. Existing
languages suffer from a variety of problems in the areas of expressiveness,
efficiency, and naturalness for linguistic query. We describe the domain of
linguistic trees and discuss the expressive requirements for a query language.
Then we present a language that can express a wide range of queries over
these trees, and show that the language is first-order complete over trees.

1. Introduction

Over the past decade, large databases of annotated text and speech
– linguistically annotated corpora – have found increasing acceptance
as primary sources of linguistic evidence. This development is adding
new rigour to the empirical foundations of theoretical linguistics, which
has previously relied on impressionistic grammaticality judgements as
the primary source of data. However, acceptance of linguistic corpora
has not been universal, partly because we still lack suitable tools for
interrogating the data. As the data becomes richer, the problem only
becomes more acute.

In response to this problem, a great variety of linguistic query lan-
guages have been proposed. Their primary application is for extracting
information about linguistic structures from corpora. Most of these
languages are designed for trees, and many have been applied to corpora
such as the Penn Treebank (Marcus et al., 1994). Figure 1 gives an
example of a linguistic tree. It is assumed to have originated in an
external linguistic event which has been orthographically transcribed
and syntactically annotated. Linguistic query languages navigate such
trees in terms of their hierarchical and temporal structure. Despite
considerable effort in developing and implementing these languages,
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Figure 1. Tree Representation

relatively little is known about their formal expressiveness, or the com-
putational resources required to process them as the size of the data
grows.

In this paper we re-examine the requirements of linguistic tree query,
discuss a language LPath that is designed to address them, and estab-
lish important formal properties of the language. The paper is organized
as follows. Section 2 lays out the linguistic motivation for our approach,
and presents expressive requirements that arise from examination of
the literature on linguistic tree query. Section 3 presents the LPath
language and Section 4 establishes its formal properties. The paper
concludes with a discussion of the adequacy of LPath in the light of
the requirements.

2. Linguistic Tree Query

This section reviews previous work on linguistic tree query, leading
to a comprehensive list of requirements for any linguistic tree query
language.

2.1. Linguistic Tree Query Languages

More than a dozen linguistic tree query languages have been devel-
oped,1 many of which we have surveyed in an earlier paper (Lai and

1 (Cassidy and Bird, 2000; Cassidy, 2002; König and Lezius, 2001; Heid et al.,
2004; Hinrichs et al., 2000; Steiner and Kallmeyer, 2002; Randall, 2008)
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Bird, 2004). In this section we discuss two exemplars which serve to
highlight the key issues and lay the foundation for the ensuing discus-
sion of requirements.

Finite structure query (fsq) is a tool for querying syntactic corpora
that employs a language of first order logic (Kepser, 2003). Hierarchical
and temporal constraints on trees are expressed using four binary
relations: (> x y) “x is the mother of y”; (>> x y) “x dominates y
(reflexive) ”; (>+ x y) “x dominates y (non-reflexive)”; (. x y) “x
immediately precedes y”; and (.. x y) “x precedes y”. Precedence is
defined temporally and is non-reflexive: a terminal node n1 precedes a
terminal node n2 iff n1 appears earlier in the sentence than n2. More
generally, a node n1 precedes another node n2 iff the rightmost terminal
node under n1 (or n1 itself if it is a terminal) precedes the leftmost
terminal node under n2 (or n2 itself if it is a terminal). Finally, a node
n1 immediately precedes a node n2 iff there is no node n3 such that n1

precedes n3 and n3 precedes n2. Note that immediate precedence is a
many-to-many relationship.

The fsq language has additional binary relations to support ortho-
graphic and morphosyntactic labelling, and special non-tree edges link-
ing nodes (e.g. for linking a pronoun to its antecedent full noun phrase).
Complex formulas are built up in the usual way using boolean operators
and quantifiers. The semantics of queries is just classical first-order
model-theoretic semantics.

For example, query (1) finds trees containing a VP dominating an
NP, where the right edge of the VP and NP are aligned (e.g. VP4 and
NP13 in Figure 1).

(E x (E y (& (cat y NP) (cat x VP) (>> x y) (!= x y)

(A z (-> (. y z) (! (>> x z))))))) (1)

The fsq language also permits axioms about trees. This allows us,
for example, to require that trees be connected, rooted and acyclic, or
to require that each node has exactly one syntactic category. Here is
a query that ensures trees contain sentence nodes conforming to the
context free grammar production S -> NP VP:

(A x (-> (cat x S) (E y (E z ( & (> x y) (> x z)

(cat y NP) (cat z VP) (. y z)

(A w (-> (> x w) (| (= x y) (= x z))))))))) (2)

Such axioms may be useful during treebank development, or for
linguists wanting to test if a treebank meets certain more stringent
requirements, e.g. that no nodes exist with a branching degree of 1.
However, in day-to-day practice, queries are existential: a linguist is
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simply attempting to locate trees of interest, as in query (1). Even in
the context of curation, a linguist does not provide axioms as in (2),
but expresses existential queries – the negation of the axioms – in order
to identify the exceptions. Since fsq is closed under negation, queries
can be formulated to extract trees that constitute exceptions to such
axioms. These trees can then be examined more closely by the treebank
developers.

The value of this full first order approach is clear. However, we
believe that the form of queries and results is not ideally suited to
use by linguists. First, the syntax is cumbersome. For many queries,
each introduction of a variable must be accompanied by quantifiers
(although the addition of irreflexive operators has reduced the need for
extra inequality statements). The prefix notation and LISP-like need
for parentheses makes the language difficult to read and write correctly,
even for experienced programmers.

A second concern is with the result of a query. By design, fsq returns
the set of trees for which the query evaluates to true with respect
to the model theoretic semantics. Yet linguists often need to identify
particular nodes or subtrees having a specific property. Finding the
matching tree is not enough: substantial extra effort may be required
to identify the matching substructures when trees are large or queries
are complex.

Next we turn to TGrep, the first special-purpose linguistic tree
query language, now available in extended form as TGrep2 (Rohde,
2001). TGrep2 includes the operators provided by fsq but adds a sibling
relation $ and sibling versions of the precedence relations $. and $..,
plus a plethora of other relations including: >, (first child), >‘ (last
child), >: (only child), transitive closures of all relations, e.g. >>, (first
child of first child etc), inverses of all relations, e.g. $,, (preceding
sibling), negations of all relations, e.g. !<< (not ancestor), and reflexive
versions of all transitive relations, e.g. <<= (ancestor or equal). Notably,
TGrep2 uses node labels where fsq has variables. For example, query
(1) can be expressed very succinctly as follows:

VP >>‘ NP (3)

TGrep2 queries can be chained: we can find trees containing a VP
dominating both an NP and a PP (4), or trees containing a VP
dominating an NP which in turn dominates a PP (5). We can also
specify that a particular subtree should be returned instead of the whole
tree, by adding an backquote before the node name, as shown in (6).
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VP > NP > PP (4)

VP > (NP > PP) (5)

VP > ‘NP > PP (6)

TGrep2 includes variables that allow nodes to be referenced multiple
times within a query. For example, the following query finds the first
common ancestor of an NP and a VP, i.e. a node p having an arbi-
trary label dominating nodes n and v, such that p has no descendents
dominating both n and v:

*=p << (NP=n .. (VP=v >> =p !>> (* << =n >> =p))) (7)

Comparing TGrep2 and fsq, we see that TGrep2 is very concise. This
conciseness is partly due to TGrep2’s rich inventory of tree relations,
and it would be a simple matter to extend fsq so that queries like
(3) could be expressed directly. More important differences concern
negation, quantification, and variables. TGrep2’s negated relations are
shorthand for negated expressions, thus the following TGrep2 and fsq
expressions are equivalent:

A !< B (8)

A ![< B] (9)

(E x (& (cat x A) (! E y (& (cat y B) (< x y))))) (10)

TGrep2 syntax does not permit negation outside an entire expres-
sion, nor does it allow explicit universal quantification of variables.
Therefore the (implicit) outermost quantification is always existential,
and axioms like (2) cannot be expressed. Variables in TGrep2 are not
purely logical; they have global scope regardless of their level of nesting
within a query. If a variable name occurs on both sides of a disjunc-
tion, constraints on the variable within earlier disjuncts are somehow
propagated to later disjuncts. It is not clear how this works when the
constraints on a shared variable involve more deeply nested shared
variables. The expressiveness of TGrep2 is not known, and there is no
explicit definition of the syntax and semantics, only software and a user
manual.

Several themes arise from our discussion of these two linguistic tree
query languages, and we believe they are relevant to the much larger
set of languages we have examined. On the methodological level, the
above two approaches couldn’t be more different: fsq begins with a
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well-understood formalism and instantiates it for this domain, while
TGrep2 is an evolving software tool with no underlying formalism.
The explicit variables and quantifiers of fsq give it more expressive
power, but queries are more cumbersome and only return entire trees. In
contrast, the path-like style of TGrep2 gives rise to concise and natural
queries, and it effectively provides us with a partial set of requirements
for practical linguistic tree query.

These observations lead us to frame the following question: can we
retain the universality and formal rigour of the first order language
along with a more convenient path-based syntax? Before addressing
this question, we flesh out a detailed list of requirements on any general
purpose linguistic tree query language.

2.2. Requirements for a linguistic tree query language

Based on our study of existing linguistic tree query languages, we
believe any expressively adequate query language should meet the
following requirements.

Hierarchy. In general, we want to be able to navigate from a node to
its descendents, children, parent, and ancestors. For example, suppose
we wish to find all sentences containing a given word, such as: saw.
We can express this in terms of tree navigation: ‘find S nodes having
a terminal node saw as a descendent’. This condition is met by S2 in
Figure 1. As another example, we might want to identify any preposi-
tional phrases contained inside a noun phrase: ‘find PP nodes having
an NP as a parent’, i.e. PP11.

Constituency. In general, we want to be able to navigate from a node
to its (immediate) left and right siblings. For example, suppose we wish
to locate noun phrases that have a prepositional phrase as a sibling:
‘find NP nodes with an immediately following PP sibling node’, i.e.
NP7. As another example, we might want to locate nouns that are
qualified with a determiner: ‘find N nodes with a preceding Det sibling
node that may or may not be adjacent to the N node’, i.e. N10, N15.

Temporal organisation. In general, we want to be able to navigate
left and right to (adjacent) nodes in the interval structure defined
by the tree. For example, suppose we wish to identify all words that
immediately follow a given word, regardless of the syntactic structure
built over those words. As another example, we might want to locate
noun phrases having a verb immediately to their left: ‘find NP nodes
which appear immediately after a V node’, i.e. NP6, NP7. Similarly,
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we might want to find nouns that appear anywhere in the tree to the
right of the first verb of a sentence: ‘find N nodes that have a V node
somewhere to their left’, i.e. N10, N15, N17.

Interactions. The hierarchical and temporal dimensions interact. In
general, we want to be able to identify the leftmost (rightmost) child
(descendents) of a node: ‘find NP nodes that are rightmost within the
scope of a VP ancestor node’, i.e. NP6, NP13. As another example, we
might want to restrict our earlier query concerning nouns and verbs to
the scope of a given verb phrase: ‘find N nodes within a VP phrase, to
the right of its first V ’, i.e. N10, N15.

Boolean operations. In general, we want to be able to form complex
queries out of simple queries using negation, disjunction, and conjunc-
tion. For example, suppose we wish to identify noun phrases that are
not dominated by verb phrases: ‘find all NP nodes whose parent is not
a VP ’, i.e. NP3, NP7, NP13. As another example, one might want to
identify the phrasal constituents inside a verb phrase: ‘find all NP, PP
and VP nodes with a VP ancestor’, i.e. NP6, NP7, PP11, NP13. We
often want to place multiple constraints on a node: ‘find all NP nodes
having a VP parent and a PP child, i.e. NP6.

Closures. In general, we want to be able to express closures of basic
relations such as dominance, precedence and sibling precedence, includ-
ing restrictions on the properties of nodes involved. For example, con-
sider the trees produced in X-bar theory (Chomsky, 1981), in which the
distance between the head of a phrase N (at terminal level) and its max-
imal projection N ′′ is unbounded. Navigating from the N node up to the
N ′′ ancestor requires a closure over the parent relation which constrains
the category to be N ′. As another example, noun phrase chunking, a
precursor to full parsing, involves processing a sequence of POS-tagged
words in temporal order: ‘find Det followed by an unbounded number
of Adj s followed by one or more N s’.

Non-Navigational Requirements. In general, we want to be able to
express constraints on node labels. For example, a part of speech
tag N.* would match any noun tag including NN (singular noun),
NNS (plural noun), NNP (proper noun), NNPS (plural proper noun).
Queries may need to access node attributes and node indexes. These are
represented in the Penn Treebank using complex labels like NP-SBJ-3,
NP-PRD, PP-LOC, and so forth. Finally, syntactic structures may not
be trees at all, but more general dependency graphs, or multi-layer
annotations including intersecting syntactic, prosodic and discourse
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structures, contexts where query reduces to general graph matching.
For the purposes of the current investigation we consider this last
category of requirements to be out of the scope of this paper. However,
it is clearly not outside the scope of the approach (LPath) we will
present in the following sections.

2.3. Evaluating existing linguistic query languages

Examined in the light of these requirements, existing linguistic query
languages vary greatly. The fsq language can express all of the above
queries. For example, (11) is the translation of the above closure query
(i.e. ‘find Det followed by an unbounded number of Adj s followed by
one or more N s’.).

(E x (E y ( & (cat x Det) (cat y N) (.. x y)

& (A z (-> (& (.. x z) (.. z y)

(! (E w (>> z w)))) (cat z Adj)))))) (11)

TGrep2 can express a subset of the above requirements: the outer-
most quantifier is required to be existential, and there are no closures
other than the transitive operators built into the language. In the Cor-
pusSearch language, boolean operators can only be applied to literals,
not arbitrary subexpressions (Randall, 2008). More formal analysis of
languages such as Tgrep2 and CorpusSearch is not possible when they
are only defined in evolving software tools. The TIGERSearch language
is well defined and like tgrep2 seems to reflect specific requirements
of linguistic tree query. TIGERSearch includes many basic operators,
e.g. >3 to traverse to a child’s child’s child (and versions for arbitrary
values and ranges >n, >m,n) (König and Lezius, 2001). It also includes
left (right) corner operators >@l, >@r , navigating from a node to its
earliest (latest) descendent. However it lacks anything corresponding
to TGrep2’s more general operators >>, (>>‘) to navigate to inter-
vening initial (final) descendents. In TIGERSearch, all variables are
existentially quantified. However, the language does not allow negation
to scope over this implicit existential.2 This is problematic because, as
noted above, linguists need to be able to look for the absence of certain
structures in a treebank. Looking across these and several other lan-
guages, it is unclear whether the specialised primitives are fundamental
or just syntactic sugar, whether gaps in expressiveness are accidental
or deliberate, and whether deliberate gaps are motivated by linguistic
or computational factors.

2 In fact, the language of TIGERSearch is the existential fragment of first order
logic and so strictly less expressive than fsq.
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Figure 2. Paths in Trees: Identifying Subtrees and Antecedents

The problem of comparison is exacerbated by the fact that most
implementations are tailored to the flat file representation used by a
specific corpus, and cannot be compared directly. Comparing code is
hampered by the fact that the code is not always available, and because
query processing is intertwined with idiosyncratic indexing and storage.
In general, these languages are not compiled into an existing general
purpose language (such as SQL), which means that their relationship
to such languages is not known. Moreover, standard indexing and
optimisation techniques cannot be applied, and the implementations
we have experimented with do not scale (Bird et al., 2006).

For these reasons, it is difficult to establish the formal expressiveness
of existing linguistic tree query languages, or establish the asymptotic
efficiency of their implementations. Instead, we return to the question
of the convenience of the syntax. From our consideration of the actual
queries used in the various languages mentioned above, we observe that
descriptions of structure almost always involve paths (as also observed
by Palm (1999)). Paths are routinely used to identify particular sub-
trees relative to the root and to describe binary relationships between
tree nodes, as shown in Figure 2. Path languages cannot explicitly
express cyclic queries (cf. (7)) without the addition of variables. How-
ever, the range of cyclic queries required for our task appears to be
limited. As we will see in Section 4.1, cycles can be eliminated from pos-
itive queries. The next section presents a linguistic tree query language
that allows a restricted set of cyclic queries to be easily represented.
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X{//Z-->Y} following a descendent C2, D∗

(scoped)

X{//Z-->Y$} following a descendent C2, D2

(scoped, rightmost)

Figure 3. Required Tree Navigations and LPath Relations

3. LPath: A path language for linguistic tree query

XPath is a language for describing paths in trees, and is popular for
the tree-structured document markup of the XML world (Clark and
DeRose, 1999). It provides a well-understood starting point for inves-
tigation of modal-style languages for linguistic tree query. LPath and
LPath+ are linguistically motivated extensions to XPath (Bird et al.,
2006; Lai, 2005). An interpreter converts LPath expressions into equiv-
alent SQL expressions over annotation graphs stored in a relational
database (Bird and Liberman, 2001; Bird et al., 2006). An open-source
implementation is available as part of the Natural Language Toolkit
(Bird et al., 2008), and a graphical interface is described by Bird and
Lee (2007).

As with XPath, LPath permits navigation from a node labelled X

to a child labelled Y with the expression X/Y. The irreflexive closure
of this relation, to navigate from a node to its descendents, is X//Y.
Here the similarity with XPath syntax ceases. Further navigations are
summarised in Figure 3.

LPath provides three substantive extensions to XPath: the immedi-
ate following axis (and its converse), a scoping operator, and tree edge
alignment. First, the immediate following axis, ->, is the natural one-
step version of the XPath following axis, -->. We can consider this axis
as taking a step to constituents immediately right of the current node.
These axes make it possible to refer to temporal context irrespective
of higher-level syntactic structure, as already exemplified in the earlier
discussion of fsq and TGrep2. Second, a scoping operator, denoted by
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braces {}, constrains navigations to the subtree that is rooted at a given
node. The query inside the scoping braces is evaluated locally on the
subtree, and cannot escape to the outside context of the enclosing tree.
For example, /...P{...Q} finds some node Q only if it occurs inside
the subtree rooted at P. Finally, left and right tree edge alignment,
denoted by ^ and $ respectively, combine with the scoping operator and
permit queries to constrain a node to be leftmost (rightmost) within a
constituent (cf TGrep >>, and >>‘). The alignment operators are just
syntactic sugar:

^A ≡ A[not <-- _ ] (12)

A$ ≡ A[not --> _ ] (13)

LPath+ extends LPath by adding atomic closures to the language,
e.g. (/N)* matches arbitrary length paths to descendents via nodes
labelled N. Note, closures must be applied to a single axis although
this may include filter expressions, e.g. (/NP[not /S])*/S is licit but
(/NP/S)*/S is not.

We will further illustrate the features of LPath and LPath+ with
the help of a series of examples. Query (1) found an NP that is right-
aligned with an enclosing VP, and we express this in LPath as follows:
//VP{//NP$}. Query (2) was an axiom to require that all S nodes are
licensed by the phrase structure rule S -> NP VP. The LPath query to
find any exceptions to this rule is expressed as follows:

//S{[not /^NP => VP$]} (14)

Query (14) combines scoping and alignment. All nodes reachable
inside the braces in //S{...} are descendents of S. By definition, VP$
is equivalent to VP[not --> _], meaning that the VP descendent of
S has no succeeding nodes under S. Thus the right edges of VP and
S are aligned; equivalently, we can say they have the same rightmost
terminal node.

Observe that LPath queries combining scoping and alignment are
not generally expressible in XPath. The query //VP{//NP$} involves
a path of arbitrary length through rightmost child nodes. To express
this in XPath we need to state that every node on the /-path between
the VP and NP has no right sibling. As we will see in Section 4, such
constraints require a special ‘conditional’ axis which is inexpressible in
XPath. A similar argument applies to the immediate following axis.
First, observe that the following axis, -->, can be defined as:

-->t[F ] ≡ \\_==>_//t[F ] (15)

If we were to define -> in the same way we would need to be able to
traverse from a node to an ancestor subject to the constraint that each
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node on the way up has no right sibling, and to traverse from a node to
a descendent subject to the constraint that each node on the way down
has no left sibling. As before, such constraints cannot be expressed in
XPath.

Using LPath+ it is possible to conveniently express a useful range of
closures which are either inexpressible or overly cumbersome in other
linguistic tree query languages. For example, consider sequential clo-
sures in the query: ‘find words consisting of consonant-vowel-consonant
sequences’. Let words, consonants and vowels be represented by the
labels W, C, and V respectively. We can express this query in LPath+ as
follows: //W{[/^C(->C)*(->V)+(->C)+_$]}. Here, the -> axis allows
us to capture the case where the consonants and vowels may not all be
at the same depth, while the scoping and alignment operators allow us
to fully specify the contents of the (lexical) constituent selected as the
scoping node.

More hierarchical closures can also be expressed. For example, to
find NP nodes that conform to the grammar fragment, NP → Adj NP;
NP → N, we can write:

//NP[(/NP$[<=^Adj])*/N] (16)

LPath+ can express the first common ancestor query (cf TGrep2
query (7)) as follows:

NP (\_[not //VP])* \_[//VP] (17)

Regular expressions over paths, such as (/NP/S)*, cannot be expressed
in LPath+. Such patterns of alternating non-terminals arise from
mutually-recursive productions in the grammar that licenses the tree-
bank. So long as the linguist is not trying to validate the treebank
against the grammar, queries along these alternating paths can be
adequately approximated using an atomic closure involving disjunction,
e.g. (/_[.NP or .S])*.

In summary, LPath+ is capable of expressing a large range of linguis-
tic tree queries, including all the basic subtree matching queries identi-
fied in our discussion of requirements in Section 2.2. The LPath+ axis
set accounts for hierarchical, sequential and sibling orderings. Thanks
to the inclusion of -> and =>, all of LPath+’s unbounded axes have
corresponding one-step versions. As such, there do not appear to be
any (unconditional) relations missing from the LPath+ axis set, and
LPath+ appears to have the complete set of primitive axes necessary
for linguistic tree query. In the next section we investigate the formal
expressiveness of LPath and LPath+.

lpath.tex; 10/02/2009; 21:13; p.12



13

4. Formal Results Concerning LPath and LPath+

As already mentioned, one of our goals is to provide an efficient lin-
guistic tree query tool. LPath and LPath+ seem to meet our linguistic
requirements, but we also need to establish the formal expressiveness
of these languages in order to determine the type of technology needed
to implement them. As we will see, our path-based approach to linguis-
tic tree query can be implemented using efficient and well-understood
technology, namely SQL and relational databases. This result falls out
of the characterisation of LPath and LPath+ with respect to an existing
family of languages.

Marx (2005a) presents a family of XPath languages that extend
the navigational functionality of XPath 1.0. Core XPath, or simply
X , is defined as the XPath 1.0 language stripped of non-navigational
components such as attributes and namespaces (Gottlob et al., 2003).3

Conditional XPath, or X c∗, extends X primarily by adding a condi-
tional axis.4 This axis describes paths in which every node meets some
condition, expressed as a filter expression. In linguistic queries, this
condition tends to appear as a negation. For example, suppose we want
to find the least deeply embedded relative clause inside an IP. For this,
we must find CPs dominated by an IP such that there is no other IP
on the path between those two nodes. 5

IP(/_[not IP])*/CP (18)

Marx has shown that X c∗ is a first-order complete language over the
signature, FOtree:

τ = {descendent, following-sibling} (19)

So, every X c∗ expression is equivalent to a FOtree formula, ϕ(x, y), with
exactly two free variables, and vice versa (Marx, 2005b). This makes
it expressively equivalent to the linguistic query language fsq discussed
previously.

We would like to determine where LPath lies on the expressiveness
hierarchy of XPath languages. In particular, we would like to know

3 Note, XPath 1.0 does not actually include a immediately following sibling axis
although it does includes its unconditional closure, following sibling. However this
axis is usually include in logical extensions as in Marx (2005a).

4 cf. Palm’s propositional tense logic for trees (Palm, 1999).
5 XPath filter expressions describe conditions on a node in a path. However they

do not affect the evaluation of subsequent parts of the path. In 18 the expression
between square brackets is structural filter on the (unnamed) nodes within the
closure.
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Figure 4. Scoping induced cycles: NP{//PP-->N\\VP}

if the LPath operators offer any extra expressiveness to these path-
based languages. The following sections explore these questions and
indicate how LPath can be extended to express closures while main-
taining evaluation efficiency. In the rest of this section we establish the
expressiveness of LPath relative to X and X c∗.

Notation: The following sections take an incremental approach in
investigating Core XPath and LPath extensions. This involves several
languages constructed and related by restrictions on closures and the
LPath operators defined above. Subscripts and superscripts denote
the addition of a particular operator. X c∗

{} denotes Conditional XPath
extended with the scoping operator (but not -> or its converse). X->{}$

represents Core XPath with ->, => and their converses, scoping and
edge alignment, i.e. LPath (L). Lc∗ denotes LPath extended with the
conditional axis, i.e. LPath+. We also introduce the notation axis+ –
the non-reflexive transitive closure of an axis – as syntactic sugar for
/axis::_/(axis)*.

4.1. LPath Operators and Core XPath

This section demonstrates that LPath is strictly more expressive than
Core XPath (X ). To begin, we have already seen that left and right
edge alignment can be expressed in X , by virtue of their definitions (12),
(13). However, the scoping operator is not expressible in X . To see this,
consider the query NP{//PP-->N\\VP} illustrated in Figure 4, where
the scoping constraint corresponds to the dashed edges in that figure.
The scoping operator asserts a dominance relation between the scoping
node and those appearing within the scoping braces. The difficulty
implementing this in path-based variable-free languages, like X , is that
there is no memory of previous steps in a path. It is not possible to force
a path to loop back to a particular node (i.e. we cannot decorate our
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////*
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VP

// VP

Figure 5. Acyclic Version of NP{//PP-->N\\VP}, equivalent to a 3-way disjunction

nodes with indexes to write NPi//PP-->N\\VP\\NPi, to ensure that the
first and last NPs are the same). To transform a “scoped” expression
into a X expression we need to convert cyclic queries into a disjunction
of acyclic ones.

An algorithm that does this for the positive fragment of X was
presented by Gottlob et al. (2004). Positive X is the set of X expressions
that do not include negation in filter expressions. This transformation is
demonstrated for a particular query in Figure 5, and the corresponding
disjunctive X expression is shown below:

//N[\VP\\_<=_\\NP[//*PP]

or \\*_<=_[//*PP]\\VP\\NP

or \\VP<=_[//*PP]\\NP]] (20)

At this point it is instructive to note how this can be used to express
other queries. For example, this sort of decycling can also be used to
express least common ancestor type queries like (7). We need to reorient
the query as a path. After doing so we can express the least common
ancestor of a VP followed by an NP as follows:

//_[/_[(VP or //VP) and =>_ [(NP or //NP)]]] (21)

This query uses the fact that a node must be the least common
ancestor of a VP followed by an NP if the VP and NP are descendent
of two different children of that node (in the specified order).
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However, this technique does not extend to X expressions with nega-
tion. Besides overt negation, L contains implicit negation in its edge
alignment operators. Thus, we cannot use this algorithm to decycle all
L queries and reduce them to X queries. Instead, the extra expres-
siveness allowed by the scoping operator is established in the following
lemma.

LEMMA 1. X ( X{}

Proof. Consider the X{} expression in (22).

//B/A{//A[not (\\_[not .A])]} (22)

This finds A-labelled nodes such that there is a \-path (upwards) of
nodes whose labels conform to the regular expression A+B. Now, Marx
and de Rijke (2004) have shown that all X queries are expressible in
first order logic over trees, extended with child and immediate following
sibling relations, using at most two variables. The regular expression
above cannot be expressed in this signature using fewer than three
variables (Marx, 2005b), and so it immediately follows that X 6= X{}.

The X{} expression above has a simple linguistic version that we
have seen before: find IPs dominating a CP with no intervening IP. This
shows that the scoping operator allows us to express some conditional
axis expressions on hierarchical paths. Since X{} is strictly contained
in L, we can now state the following relation between X and L.

COROLLARY 2. X ( L. 6

At this point we want to know if the extra expressiveness provided by
the scoping operator can be reduced to the other operators introduced
in L. This is clearly not the case. Consider X-> which is equivalent
to L without the scoping operator. The additional axes of L express
sequential relations and so do not give X-> any more ability to express
L queries that only involve hierarchical relationships. Considering (22)
and Figure 6, we see that the additional sequential relations of X->

are powerless to express (22). Thus, the scoping operator cannot be
expressed in X->.

It is clear that the scoping and the immediate following axes are
more than syntactic sugar in the context of X . In fact, the interaction
between all three L operators as well as negation admit some of the
expressiveness of the conditional axes of X c∗. The next section looks

6 The other additions of L to X are the one-step horizontal axes. It follows directly
from Marx (2005b) that => cannot be derived from ==> in X . However, we are mostly
interested in the effect of the other operators.
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B

A

A

A

Figure 6. A tree that matches query (22) but has no sequential dimension.

at the affect of these operators in the setting of Conditional XPath.
This allows us to find an upper bound on the expressiveness of L.
Putting all this together gives a clear picture of the expressiveness
required to implement L operators using members of the XPath family
of languages.

4.2. LPath operators and Conditional XPath

The first thing to notice about Conditional XPath (X c∗) is that the
immediate following relation is now derivable:

-> ≡ ([not(=> _)]\)* => (/[not(<= _)])*) (23)

Thus, the immediate following relation is just syntactic sugar in
X c∗. Edge alignment operators carry straight over from X which is
strictly contained in X c∗. The derivability of the scoping operator
follows immediately from the first-order completeness of X c∗ (Marx,
2005b). To see this more clearly, consider now X c∗ with the scoping
operator added to its syntax, X c∗

{} .

LEMMA 3. X c∗ = X c∗
{} .

Proof. As Marx (2005b) has shown, we can convert any X c∗ formula
or X c∗

{} expression into a first-order formula φ(x, y). To represent subtree
scoping we just need to assert a dominance relation between the scoping
node and any node that would fall between the scoping braces. That
is, if z is the variable representing the scoping node and w0, . . . , wk are
variables representing nodes in the scoped location path, we conjoin the
clause descendent(z, wi) to the X c∗ translation. This does not change
the number of free variables so this has an equivalent X c∗ expression.

Thus all L operators are expressible in X c∗. Moreover, the first-order
completeness of X c∗ means that the interactions between L operators
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in X c∗ add no more expressiveness. We can now also see that L is
strictly less expressive than X c∗. The closures expressible in L are due
to the scoping operator and only operate on the hierarchical structure.
So, the horizontal conditional closures available in X c∗ are not available
in L. We can show this in a few steps, as follows.

LEMMA 4. The filter expressions of X-> are definable by first-order
formulae ϕ(x) in one free variable and at most two variables in sig-
nature τl = {/, //, ->, ==>, Pi} where Pi is a countable set of unary
predicates.

Proof. (Sketch) It is easy to translate X-> filter expressions into a
propositional modal logic over τl. The mapping into the two-variable
first-order logic over the signature τl follows easily from the standard
translation from modal logic (Blackburn et al., 2001).

THEOREM 5. L ( X c∗

Proof. Consider the following two formulae.

ψ ≡ following(x, y) ∧B(x) ∧A(y)

∧∀z((following(x, z) ∧ following(z, y) ∧ leaf(z)

→ ∃w((z = w ∧A(w))

∨(ancestor(z, w) ∧A(w) ∧ ¬ ancestor(w, x))))). (24)

ϕ ≡ ∃v(root(v) ∧ ∀u(u 6= v → (child(u, v) ∧ leaf(u)))). (25)

That is, ψ picks out BA+ paths on the -> axis, while ϕ selects trees
of depth exactly two. Now, suppose we wish to construct a query that
picks out BA+ paths on the -> axis in exactly trees of depth two. This
can be expressed as follows:

imf2
BA+(x, y) ≡ ψ ∧ ϕ. (26)

Recall that X c∗ is first-order complete so the formula above has
an equivalent X c∗ expression. However, this is outside of X-> due to
Lemma 4. Now we can show that we cannot achieve the extra expres-
siveness with the scoping operator.

The only non-trivial subtree that the scoping operator can select
in this sort of tree is the whole tree. We have also seen that the
scoping operator amounts to adding descendent relationships between
the scoping node and the nodes referenced between scoping braces.
However, any extra descendent relationships are redundant in this
situation because of the depth constraint (e.g. ϕ).

So, any correct query equivalent to imf2
BA+(x, y) is equivalent to a

query without the scoping operator. That is, if it is expressible in L it
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must also be expressible in X->. However, we still need three variables
to express this query. It now follows from Lemma 4 that this cannot
be expressed in L. This proves the theorem. 7

We conclude that the expressiveness of LPath (L) lies strictly
between Core XPath (X ) and Conditional XPath (X c∗). Thus L is
a new member of the XPath family of languages, and not a notational
variant of one of the existing languages.

4.3. The Expressiveness of LPath+

We have just seen that LPath (L) is less expressive than Conditional
XPath (X c∗). In this section we discuss Conditional LPath, Lc∗, and
its relationship to X c∗. Since we are simply adding the LPath operators
to X c∗, by definition, Lc∗ ⊇ X c∗. Here, we consider whether Lc∗ ( X c∗

or Lc∗ = X c∗.
The proof of Theorem 5 shows how the conditional immediate follow-

ing axis can be expressed in first-order logic over the signature of X c∗.
The formula ψ (24), from the previous section, can easily be modified to
express a conditional -> axis in general. This is the only new primitive
axis in Lc∗. Accordingly, all Lc∗ expressions without scoping braces can
be expressed in first-order logic. As we saw in Lemma 3, we can trivially
include the scoping operator. Thus we have the following equivalence:

THEOREM 6. Lc∗ = X c∗; consequently Lc∗ is expressively complete
for first-order definable paths.

That is, for every FOtree formula φ(x, y) (cf. Section 4) there exists
an equivalent Lc∗ expression and vice-versa. In fact, we can find an
equivalent X c∗ expression for the conditional immediate following axis
using the fact that X c∗ is closed under intersection and complementa-
tion (Marx, 2005b) (Theorem 2). Using Marx’s notation we can write
an expression equivalent to //B(->A)+ as follows:

(?B/ following?A) ∩ φ/ following

where

φ(x, y) ≡ (?B/ ancestor /(child?¬A)+/? leaf) ∩ following

7 In fact, the example in the proof above basically allows to prove the theorem
using the more general result in Tiede (2008) (Proposition 20). The proof of that
proposition itself calls on Schlingloff (1992) and Kamp (1968).
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This gives us the upper bound on the expressiveness of this language.
The hierarchy of expressiveness for LPath and LPath+ is as follows.

Core XPath ( LPath ( LPath+ ≡ Conditional XPath (27)

Along with the proof of the X c∗ closure under complementation,
Marx (2005b) provides a method for finding the complement of any
X c∗ path set. Thus, we now have a concrete method for translating Lc∗

expressions into X c∗. The benefit of understanding this translation, and
understanding the LPath/XPath expressiveness hierarchy in general, is
that it provides a clear range of options for efficient implementation (c.f.
Afanasiev (2003)). The modal basis of X c∗ lends evaluation tractability.
Thanks to a result by Alechina and Immerman (2000) we can see that
Lc∗ queries can be evaluated in time linear both the size of the data
and the query.

4.4. LPath+ and Higher-Order Logics

The question remains whether first-order expressiveness is enough to
describe linguistic structure. In particular, counting and full transitive
closures over paths are not definable in our first-order language. They
are, however, expressible in higher-order logics such as monadic second-
order logic (MSO). MSO, in particular, has been extensively studied in
Rogers (1994) in terms of model theoretic syntax. In that dissertation,
Rogers demonstrates how a substantial set of principles of Government
and Binding theory (GB) for English can be expressed in MSO.

Higher-order logics can pose tractability problems in terms of query
evaluation. For example, while MSO has linear data complexity, this
result relies on a translation to tree automata which may result in a
non-elementary blow-up in query size (Libkin, 1998). However, recently
Maryns and Kepser (2008) have implemented MSO as a tree query
language named MonaSearch.8 In terms of syntax and semantics,
MonaSearch can be seen as a direct extension of fsq (c.f. Section 2).
Queries are converted into tree automata which are then run over a
corpus using the MONA tree automaton toolkit (Henriksen et al.,
1995). Unlike fsq, the processing time of logically equivalent queries
is seen to be independent of the actual query formulation and query
evaluation is linear in the size of the treebank.

Closures are also available in Propositional Dynamic Logic (PDL)
(Harel et al., 2002) which also has an equivalent in the XPath family,
Regular XPath. That is, XPath with full regular expressions on paths.
In fact, there is a clear correspondence between the XPath family we

8 http://tcl.sfs.uni-tuebingen.de/MonaSearch/
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have considered in this paper and modal logics developed for model
theoretic syntax (Blackburn et al., 1996; Palm, 1999; Kracht, 1997;
Tiede, 2008). Various arguments have been made for the adequacy of
different levels of expressiveness required and what more expressiveness
buys. PDL is strictly less expressive than MSO (Kracht, 1997; Palm,
1999) and more expressive than FOL.

However, there are linguistic arguments that expressiveness beyond
the first-order realm is unnecessary. For example, the ability to perform
counting type queries is possible in MSO and PDL. That is, queries
of the type (->Adj->Adj->Adj)+ which looks for linear chunks in
which the number of Adjs is a multiple of three. However, Berwick and
Weinberg (1984) have argued against this sort of counting in natural
language formalisms. Similarly, Hoeksema and Janda (1988) report that
morphological infixation does not need to count syllables or feet, but
refers to constituent boundaries with no need for counting past one.
That is, we need to be able to distinguish the beginning (resp. end) of
a constituent and the following (resp. preceding) constituent, but we
do not need to be able to count higher temporal distances than this. In
fact, the only query cited in Maryns and Kepser (2008) that cannot be
handled by first-order logic is one that looks for S -labelled nodes with
an even number of descendents. This suggest that the expressiveness
offered by MSO and PDL is too much.

However, it is well known that there are natural language structures
that are not expressible even in MSO. For example, the cross-serial
dependencies which occur in Swiss German require context-sensitive
structures (Shieber, 1985). Tiede and Kepser (2006) show that first
order deterministic transitive closure logic (FO(DTC)) strictly extends
MSO. As the name suggest, this logic simply adds the deterministic
transitive closure operator to FO.9 This proves expressive enough to
capture the cross-serial dependencies mentioned above. This result
is especially interesting given the discussion of closure requirements
above. However, this logic is undecidable on finite ordered trees.10 For
the querying standpoint, Mönnich et al. (2001) have shown how such
structures can be queried by ‘lifting’ the treebank grammar and the
MSO query into an algebra where mildly context-sensitive structures
can be coded. A filter grammar is then applied to obtain the query
result.

It is clear that we need expressiveness up to FOL and in certain
cases we need expressiveness beyond MSO. However, it is not clear

9 That is, it deals with relations that are functions
10 Also Kepser (2006) considers, from the model-theoretic syntax standpoint, the

logic that results from adding only transitive closure over binary relations. Unlike
FO(DTC), this logic is known to be less expressive than MSO.
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that we need the intermediate expressiveness of PDL. The a gap in
the expressiveness requirement certainly warrants further attention.
Moreover, it would be interesting to see whether projection techniques
could be used to bridge this gap from a path-based/modal stand point.
Further development and refinement of logics in the model-theoretic
syntax program will certainly shed more light onto the querying prob-
lem. However, given the linguistic arguments outlined above, it does
not seem necessary or worthwhile to sacrifice the efficiency of Lc∗ for
more expressiveness at this point. Lc∗ appears to have the right level
of expressiveness for general purpose linguistic tree query. By stay-
ing inside first-order logic, Lc∗ also stays within reach of SQL and
achieves an optimal trade-off between expressiveness and efficiency.
As previously noted, the only other current linguistic treebank query
language with this level of expressiveness is fsq (Kepser, 2003). Section
2 discussed reasons why the path-based approach we have taken here
might be preferable. In particular, our example queries highlighted the
comparative succinctness of path queries.

5. Conclusion

In recent years, over a dozen linguistic query languages have been
developed. As shown in our earlier survey (Lai and Bird, 2004), these
languages have many common features, but differ greatly in syntax,
in supported linguistic relations, and in the kinds of quantification and
negation they provide. Little is known about their formal expressiveness
and so it is not clear which languages are notational variants, and which
offer additional expressiveness. Similarly, the computational cost of any
given syntactic feature is unknown.

LPath was proposed as a new linguistic query language which aug-
mented the navigational axes of XPath with three additional tree oper-
ators. LPath is unique among linguistic query languages in being fully
path-based, a characteristic which appears to be ideal for linguistically-
motivated tree navigation. Moreover, LPath is unique among linguistic
tree query languages in having an interpreter built on top of SQL,
permitting query processing to leverage the existing indexing and opti-
mizing technologies of relational database management systems (Bird
et al., 2006).

We have analyzed each of the syntactic innovations of LPath and
have shown that they are more than just syntactic sugar. In fact, LPath
occupies a new position on the expressiveness hierarchy between Core
XPath and Conditional XPath. We extended LPath with the condi-
tional axis, resulting in a new language called Conditional LPath (or
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LPath+). We showed that LPath+ has exactly the same expressiveness
as Conditional XPath.

This finding is significant, since it ensures that our path language,
highly customised for the needs of linguistic query, incorporating scop-
ing, alignment, horizontal navigation, and simple closures, does not
exceed first-order expressiveness. We have shown that LPath+ is suffi-
ciently expressive, and also that LPath+ queries can be mechanically
translated to SQL for efficient execution against large treebanks.

As we observed at the outset, an obstacle to the widespread adoption
of linguistic corpora has been the lack of suitable tools for accessing
interrogating the data. As the data has become richer this problem has
only become more acute. Although we have addressed this problem,
there are further obstacles in the area of linguistic adequacy. Does
the corpus capture the linguistic phenomena being investigated? Do
human annotators make reliable judgements about the correct way to
mark up a particular linguistic construction? Still, now that we have a
solution to the problem of access, solutions to the problems of coverage
and quality follow directly. Armed with an effective way to query a
corpus of linguistic trees, it becomes practical to check the accuracy of
annotations and the suitability of the corpus for a particular study.
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