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1 Introduction

Diversity of language is a key part of our understanding of natural languages now and from the past.
This diversity goes hand in hand with language change. Change is pervasive at every linguistic
level. However, the space of existing languages does not appear to be unconstrained. In the modern
generative tradition, this is governed by Universal Grammar (UG) (see, for example, Kroch (2000)).
A number of computational models have been proposed to probe the nature of language change
and role learning has within this (eg. Kirby (2001); Kirby et al. (2007); Nowak et al. (1999);
Niyogi and Berwick (1998); Griffiths and Kalish (2005)). All of these studies can be grouped under
the umbrella of iterated learning. Within these computational models, variation arises primarily
from the individual learning mechanism and the varying input coming from the rest of the adult
population.

Different studies embrace different approaches to the problem. However, all of these approaches
require the learner to select a grammar from a finite data set. However, the majority of com-
putational models of language change have generally been frequentist in nature. In particular,
Maximum Likelihood Estimation (MLE) is usually employed as the decision making criterion. In
this context, the learner chooses the grammar which makes the input data most likely. In actuality,
this amounts to assuming that grammars have specific and probabilities associated with particular
syntactic constructions. Grammar acquisition is then reduced to matching observed frequencies
to these grammar intrinsic probabilities. Whatever uneasiness one might have about embedding
probabilities so deeply in the grammar we can immediately note another problem associated with
this sort of estimation. That is, MLE requires us to conflate several factors: innate (prior) biases,
social and communicative factors, and random noise.

A natural candidate for solving such problems that has the ability of separating out these factors
is Bayesian decision theory (c.f. Berger (1985)). That is, we set the learner the goal of choosing
the grammar that will maximize their expected utility. This differs from the MLE based approaches
mentioned above in that it takes a subjectivist view towards to the problem. Strong arguments
have been made for the philosophical advantage of the Bayesian approach (Efron, 1986; Jaynes,
2003). The main benefit from our point of view is that the utility function explicitly takes into
account issues of communicability and processing/production difficulties. This allows us to, at least
theoretically, separate out such factors in a principled fashion.

This paper considers these different approaches with respect to the case of clitic position change
in European Portuguese. In the end, I will argue that, while MLE is the bread and butter of
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frequentist statistics, it does not appear to be the right tool for this job. Other Bayesian approaches
to language change have been proposed. However even within general Bayesian frameworks, MLE is
still implicitly employed (cf. Griffiths and Kalish (2005) Dowman et al. (2006) and Briscoe (2000)).
They, thus, fall prey to the same difficulties that frequentist approaches do.

As such, this paper proposes a new model of Bayesian iterated learning that tries to address
some of these issues. As we will, see Bayesian decision theory requires new technology, in the form
of priors and utility functions, that require careful construction and consideration. The model
presented here is by no means the final solution but a first attempt to lay out how this framework
can be applied to the logical problem of language change. In order to motivate and empirically
ground this study, the models are considered in view of the case of Portuguese clitic placement.

The Portuguese data is reviewed in Section 2. The rest of the paper is structured as follows.
Section 3 reviews several models of iterated learning. Having discussed the problems with these
approaches, Section 4 presents the a Bayesian decision theory model for the Portuguese data.
Section 5 presents the results of several simulations based on that model. Section 6 concludes the
paper.

2 Portuguese clitic change

Classical Portuguese (ClP, 16th to mid-19th century) allowed direct object clitics to appear as both
enclitics and proclitics, as shown in the following examples.

(1) a. Paolo
Paolo

ama-a.
loves-her.

‘Paolo loves her’

b. Paolo a ama

In fact, Galves et al. (2005) have found proclisis to be strongly preferred form in ClP. However,
in Modern European Portuguese (EP) only the enclitic form is allowed in affirmative sentences
with topics, adjuncts or referential subjects (as above). Otherwise, proclitic forms are obligatory
in other syntactic contexts. In particular, proclisis is the only option in in wh-questions, in negated
sentences, or sentences with quantified subjects.

(2) a. Quem
who

a
her

ama.
loves

‘Who loves her?’

b. *Quem ama-a.

(3) a. Alguém
Someone

a
her

ama.
loves

‘Someone loves her’

b. *Alguém ama-a.

We can note that ClP and EP are the same with respect to obligatory proclitic contexts. Also,
Enclisis is mandatory in both ClP and EP in V1 contexts.

According to corpus studies (Galves et al., 2005) there was a sharp rise in enclisis in the early
to mid 18th century. This change led to the current state of EP in which there is no longer a
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choice between proclisis and enclisis. A prosody based analysis of this change is given by Galves
and Galves (1995). On a syntactic level, the change in grammar boils down to to the weak/strong
setting of the Arg feature of Comp. In that analysis, Galves and Galves argued that the change
was driven by vowel reduction, resulting in a change of stress patterns.

This analysis, of course, is not the last word on this phenomena (c.f. Galves (2003), Costa and
Duarte (2002)). However, the fact that there is only one feature change posited in this analysis
makes it ripe for a computational treatment. Galves and Galves (1995) provide a model based on
the Thermodynamic Framework from statistical mechanics. In fact, this data and analysis has been
used as a case study for computational language change in Niyogi and Berwick (1998) and Niyogi
(2006). There appears to be enough here to highlight the differences (and deficiencies) in current
computational models of language change. The next section reviews these attempts to model this
change. It also reviews other models of language change with respect to this problem.

3 Modelling Portuguese Clitic Change

3.1 Iterated Learning

The computational approaches to language change reviewed below are for the most part couched
in the Iterated Learning (IL) model (Kirby, 2001; Smith et al., 2003). There, an IL model consists
of sequence of agents through time. Agent Ai has a hypothesis hi which represents their linguis-
tic competence. Ai produces utterances Ui (linguistic performance) which becomes the primary
linguistic data for Ai+1.

Hence, there are two main components to iterated learning: language acquisition and language
production. Language acquisition treats the problem of how the an agent develops, or chooses,
a linguistic hypothesis. For our purposes this hypothesis will be a grammar. Syntactic change
is usually framed in terms of changes of the parameter settings that make up a natural language
grammar. So, it may be possible to restrict the hypothesis space to choices between parameter
settings. Indeed, this is the account suggested by Galves and Galves (1995) mentioned above for
Portuguese.

Once the agent has acquired a grammar, it proceeds to produce data for the next generation.
As we will see below, the production component can have varying degrees of dependence on the
acquisition procedure. In general, the question of how to implement either component is wide
open. However, this general framework provides a good starting point for examining the asymptotic
behavior and population dynamics of language change models. A good place to start with respect
to the Portuguese data is with the computational model accompanying the analysis in Galves and
Galves (1995).

3.2 The Galves Batch Model

Galves and Galves (1995) situate their computational model of clitic change, the Galves Batch
Model (GBM), in statistical mechanics framework. The basic idea is that prosody weighs-in on
grammar selection during acquisition. In particular, stress patterns are learned before syntax.
These stress patterns admit weights proportional to the amount of exposure the learner has to
them in the pre-syntactic stage. So, on the one hand, in ClP proclisis appears in both affirmative
sentences (4) and, for example, wh-questions (6), so these are lumped together for purposes of
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stress contour weighting. On the other hand, matrix clauses of form in (5) form their own stress
contour class.

(4) Paolo a ama (a1)

(5) Paolo ama-a (a2)

(6) Quem a ama (a3)

For convenience, let a1, a2, a3 refer to constructions of the forms in (4), (5) and (6) respectively.
That is, proclitics in affirmative sentences, enclitics in affirmative sentences, and constructions with
obligatory proclitics.

Each construction type given a probability proportional to the stress contour it is associated
with it. For example, assume clauses of type a1 and a3 have weight p and clauses of type a2 have
weight q. For simplifying purposes, all other types of clauses are ignored. Then, we have the
following probabilities:

P(a1|GClP ) = P(a3|GClP ) = p/(2p+ q) and
P(a1|GEP ) = 0,

where the former refers to sentences of the form (4) and (6). The ungrammaticality of the proclitic
construction is reflected in the latter. The rest of the probability mass is spread between the other
two clause types. Each grammar can then be thought of as a model with where parameters (the
probabilities associated for each clause type) are derived from prosodic information. Grammar
selection is then treated as a maximum likelihood estimation problem. That is, the learner selects
the grammar that is most likely given the data seen by the learner given grammar models with
parameters set concretely by the stress induced weights.

For simplicity Galves and Galves (1995) assume that the grammars for ClP (GClP ) and EP
(GEP ) differ only with respect to clitic placement. Proclisis is banned in affirmative contexts in
EP. So, if the learner hears clauses of type (4) even once, GClP will be selected instead of GEP .
Hence, the authors derive the probability of the learner acquiring GClP as the probability that
clause type a1 occurs at least once in n samples. As seen above, this probability is tied to the
stress-induced weightings. So, this then ties the change in clitic distribution to attested changes in
the phonological system.

3.3 Galves Batch Learning as a Markov Process

Galves and Galves (1995) use the GBM model to find a theoretical critical point at which learners
start acquiring GEP and this grammar appears to take over. The asymptotic behavior of this system
is further explored in Niyogi (2006) (based on Niyogi and Berwick (1998)). Niyogi implements the
GBM as part of a iterated learning style Markov process. He assumes that at each generation
some proportion of the population, α say, have GEP (thus, 1−α have GClP ). The proportion that
acquire GEP at the next time step depends on α and the learning mechanism which is once against
framed as an MLE problem.
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Niyogi re-implements the GBM but abstracts away the role of prosody in the language change.
In this formulation, GClP clauses involving proclisis have the same probability:

P(a1|GClP ) = P(a3|GClP ) = p, p ∈ [0, 1],
P(a2|GClP ) = 1− 2p.

Similarly for EP

P(a1|GEP ) = 0,
P(a3|GEP ) = q, q ∈ [0, 1] and
P(x3|GEP ) = 1− q.

Note, unlike the original algorithm presented by Galves et al., these probabilities hold across the
board for all speakers of a particular grammar.

A language transition matrix derived purely from the parameters p, q and n, the number of
samples available to the learner. That is, we treat the system as a Markov process with only two
states: GEP and GClP . As in the original GBM, this implementation assumes that learners are
intolerant to noise and that a single sample of a1 is enough to cause the learner to choose GClP .
Note, this technology assumes that populations are infinite. This is implicit in the fact that the
populations are represented as proportions.

Niyogi explores how this system evolves when varying p, q, n and the initial proportion of speak-
ers of GEP , α . He finds that populations consisting entirely of GEP speakers remain GEP speakers.
However, certain parameter settings (eg. np > 1) induce equilibria where mixes of GClP and GEP
speakers stably co-exist. There are various combinations of p, q, n which will result the a GClP
population completely moving to GEP population (e.g. np < q).

Niyogi’s implementation of GBM is very clean in terms of the formalization. However, the
cleanness of the parameterization leads to other problems. Learners may still acquire GClP even
though they do not see any instances of variational proclisis (a1) in the data. This happens if there
are too many instances of the type a3 (obligatory proclisis). It is tempting to infer that this is due
to the presence of proclisis in a3. However, it is only really an artifact of the model. This would
still happen if the syntax of the a3 type was totally devoid of clitics.

An alternative Batch Subset Algorithm gets around this problem. This decision rule has GEP
rejected if there is even one occurence of a1. Thus, the MLE component for the other syntactic
types is removed. Niyogi show that the behaviour of this system depends on the sample size. Thus
the change from GClP to GEP could arise from there being a drop in the rate of clitic occurrences
in general. This result is independent of q, the probability of a3 in GEP . However, the assumption
still remains that p, the probability of a1 in GClP is help constant through all speakers and times.

In the original GBM, the probabilities associated with a syntactic construction change with
each generation. This leads to the eventual dying out of GClP after the external shock from the
phonological system. Niyogi’s interpretations are purely population based instead. Probabilities of
syntactic types (e.g. p, q above) are intrinsic to the language here. So, a learner who acquires GClP
will continue to use very high rate of variational proclisis (a1) in spite of being surrounded by GEP
speakers. In fact, this deeply embedded into the asymptotic analysis of the model and accounts for
the unstable equilibria in the model. However, this is counterintuitive. We would expect the desire
to communicate would pressure speakers of GClP to lower the rate of variational proclisis in the
face of multitudes of GEP speakers. In summary, it appears the problems encountered by Niyogi’s
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implementation stem from the abstraction away from Galves and Galves’ external (prosodic) input
and the stronger parameterization of the grammars.

3.4 The Trigger Learning Algorithm

Niyogi also tries out Portuguese clitic placement with respect to the Trigger Learning Algorithm
(TLA) of Gibson and Wexler (1994). In contrast to the GBM, the TLA is an online algorithm.
Niyogi and Berwick (1996) elegantly formalizes this as a Markov process. The state space consists
of possible grammars. The initial state is chosen at random. The learner stays in that state (i.e.
with that grammar) until they are presented with an utterance that cannot be parsed with the
current grammar (a trigger). At this point, another state is chosen at random and if the current
utterance can be parsed in this state then the learner moves into that state. Nigoyi derives transition
probabilities for the TLA with respect to Portuguese. It follows that GClP cannot be eliminated,
in this model, if α0 < 1/2 (proportion of GEP speakers). In fact, the system attains a stationary
distribution with α∞ ∈ [0, 1/2].1 Since Portuguese did in fact evolve into from having a majority
of ClP speakers to population of EP, this is clearly a problem.

The TLA is its memoryless. This means that changes in state only depend on the current
sample. The online nature of this algorithm is attractive given children to appear to learn in
increments. However, this means the learner will acquire whatever grammar is associated with the
state they are in when they reach the end of the critical period for acquisition, regardless of the
data they observed before this. Learners disregard all previous evidence for a particular grammar
when presented with one utterance that does not fit that grammar. That is, this algorithm is not
robust to noise. Theoretically, the learner will acquire the wrong grammar if they are presented
with an erroneous utterance just before the end of the critical period. This reinforces the fact that
models of change need to be able to deal reasonably with noise in the data.

3.5 Bayesian Updating

Briscoe (2002) presents a language acquisition model based on Bayesian updating. This is an online
algorithm, Briscoe’s approach is something like the TLA with memory. However, the goal here is
to use all the available evidence in grammar selection in a robust fashion. Each (binary) parameter
setting is associated with a probability. A parameter setting is active (‘on’) if its probability is
greater than some threshold (e.g. 0.5 in Briscoe’s implementation). The initial (prior) probabilities
are left to UG to decide (as well as other cognitive factors). This presents an initial hypothesis. As
each utterance is presented, the learner updates their hypothesis by changing probabilities for pa-
rameter settings. If the utterance is parseable under the current parameter setting, their associated
probabilities are increased. If not, the acquisition procedure randomly flips the parameter settings
of n parameters. If this results in a successful parse, then probabilities for those flipped parameter
settings are reinforced. At the end of the critical period, the grammar acquired corresponds to the
parameters that are active.

The updating in this acquisition processes is theoretically based on Bayes rule.

P(h|d) =
P(d|h)P(h)

P(d)
1nb: Nigoyi uses α represent the proportion of GClP speakers. I am doing the opposite to fit with the analysis at

the end
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Where h is the hypothesized grammar and d is the observed data. Briscoe theoretically chooses the
Maximum a-posteriori (MAP) parameter setting to reinforce. That is, the grammar the maximizes
the posterior probability given the full data set. This is really just the grammar that maximizes
likelihood of the data weighted by the grammar’s prior probability. Note, in this setting, if we
assume inputs to be independent, then online updating is equivalent to batch updating.

The actual implementation of this procedure presented in Briscoe (2002) differs from the theory.
Here, probabilities are represented as fractions. When an utterance is successfully parsed both the
numerator and the denominator are incremented by one. If the current input can only be parsed
by flipping a parameter, then only the denominator of the fraction associated with that parameter
is incremented. This seems like a reasonably intuitively way obtaining reinforcement but it does
not have a clear relationship with Bayes rule. For some parameter P , P(P ) is just the posterior
derived from the last updates. According to Bayes rule, this is updated by multiplication with
P(y|P )/P(y). In reality, after n inputs with k unparseable inputs and P = 1.

P(P |t) =
num(P(p)) + n− k
den(P(p)) + n

It is not very obvious how to relate this to the Bayesian updating. However, Pearl (2007)
derives a very similar update rule assuming that the hypotheses considered by the language learner
are possible means of binomial distributions associated with particular grammars. That is, the
expected probability of encountering a data point from a grammar, A say. This is equated with
the probability that that grammar is the ‘right’ one. This is a rather indirect way of encoding
the fact that learners expect their input to be noisy. This sort of updating is also very similar to
model presented by Yang (2001) in terms of the use of a linear reward-penalty model for grammar
selection.

In any case, this sort of update rule requires further refinement in order to be applicable to
cases like Portuguese clitic change. In order to use Bayes’ rule we need know how to calculate the
likelihood of a syntactic type in a particular grammar (just as in the GBM). We also need to know
how this should be used in the updating procedure. This is relevant to our Portuguese data if we
assume proclitic and enclitic (a1, a2) have the same semantics.

Also, it is not clear how to derive a production model from parameter weightings. In Briscoe
(2002) simply samples uniformly at random from a languages utterances to produce data for the
production step. Once again, this does not seem quite right in the context of the Portuguese data
where we want to model the changes in semantically equivalent types.

3.6 Bayesian Iterated Learning

A somewhat more transparent implementation of Bayesian Iterated Learning (BIL) is given by
Griffiths and Kalish (2005) and Kirby et al. (2007). Bayesian iterated learning presented by these
authors differs from the language models above in in explicitly considering signal and meaning
pairs. Since inputs are assumed to be independent, Griffiths and Kalish use a batch process in the
acquisition step. Let Yk = {y1, . . . yn} be the utterances that an agent in generation k receives.
Then, let Xk = {x1, . . . , xn} be the meanings associated with those utterances. Note that a
meaning xi can have more than one utterance associated with it. Acquisition is then based on a
new instantiation of Bayes’ rule where the hypothesis g is a grammar for our purposes.
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P(g|Xk, Yk) =
P(Yk|Xk, g)P(g)

P(Yk|Xk)
.

This gives a posterior distribution over possible grammars. In Griffiths and Kalish (2005) a
grammar chosen by the learner by randomly sampling a grammar from the posterior distribution.
Note, as in Briscoe’s approach, priors over grammars are assumed to be innate to each learner and
invariable across generations. The input to each generation (production) is generated via another
distribution q(x) which describes the probability of the event that the meaning x is uttered in the
real world. Importantly, this is modelled as independent of a speaker’s grammar. It is not the
subjective probability of x being uttered estimated by the learner.

The main concern for the authors is to look at the asymptotic behavior induced by iterated
learning via Markovian techniques. They show analytically that the stationary distribution of the
Markov process converges to the prior fed into the system. This result is at least counterintertuitive
as it says that language change is really just a random walk through the prior distribution over
possible languages.

Convergence to the prior also is at odds with other (brute force) simulations that had found
emergence of language properties such as regularity (Kirby, 2001; Smith et al., 2003). In Kirby
et al. (2007) the learner instead acquires the MAP grammar rather than sampling from the posterior
distribution. With this selection mechanism, divergence from the prior is possible. Kirby et al.
(2007) also look at selection mechanisms that are intermediate between MAP and sampling from
the posterior. They test biases between holistic and regular languages. They find that regular
languages can be overrepresented with respect to the prior. According to Kirby et al. prior bias
is most mitigated when the MAP criterion is used for grammar selection. We might also expect
biases towards specific parameter settings to be overridden with enough cultural pressure. Griffiths
and Kalish (2007) shows that sampling from the posterior is a form of Gibbs sampling. On the
other hand, iterated learning with MAP selection corresponds to a variant of the Expectation
Maximization algorithm.

3.7 Bayesian Iterated Learning applied to Portuguese Clitics

The addition of meaning into this model what really differentiates this approach from the others
above. We can see this by noting that the MAP criterion is the maximum likelihood grammar
weighted by the prior. If we choose the prior to by uniform then we indeed just have the GBM.
Now, we can use this conditioning to reduce the parameters required.

Note, whenever we have a one to one mapping between a meaning x and a type y then
P(y|x,G) = 1 − ε if the grammar G admits x (ε is an error term). This happens in our Por-
tuguese data in cases of obligatory proclisis in ClP and EP, and the obligatory enclisis in EP. So,
we do not need to consider the contribution of obligatory proclisis to calculate the MLE (or MAP)
grammar. Also, we only need to parameterize the error term to do the the likelihood computation
for GEP .

If we only care about finding MLE (or MAP) grammar, and taking probabilities from Nigoyi’s
implementation of GBM (e.g. P(a1|x1) = p), then we have the following.

P(GClP |Yk, Xk) ∝ P(GClP )((p− ε/2)/(1− p− ε))a((1− 2p− ε/2)/(1− p− ε)b,
P(GEP |Yk, Xk) ∝ P(GEP )(ε/2)a(1− ε/2)b,
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where a and b are the number of time proclisis (a1) and enclisis (a2) were observed respectively
with the meaning of an affirmative declarative (x1).

In general, this approach allow us to focus only on types that show variation. The prior
notwithstanding2, this reduction in the parameter space is welcome in comparison with Nigoyi’s
implementation. However, this still suffers from over-parameterization the problems associated
with MLE. That is, P(a1|x1) = p is still assumed to be an innate part of the grammar.

3.8 Model Comparison and Requirements

Nigoyi claims his implementation shows that learners will eventually choose EP over ClP under
these conditions. The case is the same for Bayesian iterated learning (except with a highly skewed
prior). Rates of enclisis are known to be very low in ClP (around 5% (Galves and Paixao de Sousa,
2005)). If we can assume that the production grammar is the same as the perception grammar.
We expect ClP speakers to generate mostly proclitic utterances. The change in relative frequencies
of enclitic and proclitic constructions is with respect to the population as a whole. That is, due
solely to proportions of EP and ClP speakers in the population. Thus, the change properties are
sensitive to how the languages are parameterized, rather than to the actual usage preferences of
the population. If we assume this parameterization is a part of the definition of the grammar then
it is not clear why ClP should have exhibited the stability it did prior to the change.

This exposes the gap between the GBM, Nigoyi’s implementation of the GBM and Bayesian
iterated learning. Recall, in the GBM maximum likelihood estimation is done with respect to
probabilities derived from prosody acquisition of individuals. This is more in tune with the pure
simulation approach to iterated learning of, for example, Kirby (2001). In this sense, the original
GBM is also closer to Briscoe’s procedure, as frequencies of types observed in the critical period
directly contribute to categorical parameter setting.

We have seen above that embedding of probabilities into the definition of the grammar causes
artifacts to arise in Nigoyi’s implementation. It makes sense to instead put the probabilities of
different construction types, like variational enclisis and proclisis, back into the acquisition proce-
dure. One way to go about this would be to do some estimation of type frequency and then create
a decision procedure that chooses the grammar. The next step is estimate production probabilities
for meanings that have more than one possible construction type associated with it. Estimating
this requires some understanding of the usage of different types and how this changes over time.

When we formalize this, we would like to incorporate some formal notion of why this probability
estimation procedure is important to the learner. At least part of this should come from the fact
that the learner wishes to communicate effectively. That is, we want to incorporate the intuitive
idea that using rare forms when frequent forms exists is disfavored. Moreover, it seems desirable
to model the fact that some forms are harder to produce (and process) than others. This is exactly
what Galves and Galves propose when they argue for prosody driven change in clitic placement in
Portuguese. In general, we want to formulate iterated learning of grammars in a manner that can
take these factors into account.

2Recall, we can always choose this to be uniform, although I will argue later that this is not appropriate
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4 Bayesian Learning Redux

The rest of this paper presents a new model of Bayesian iterated learning based on Bayesian Decision
Theory and the requirements outlined above. The appropriateness of the Bayesian approach to
statistics has been well debated (Efron, 1986). Two of the approaches described above were situated
in Bayesian statistics. However, all the approaches above relied (at least theoretically) on maximum
likelihood estimation. This makes, for example, Niyogi’s approach much more similar to that of
Griffiths and Kalish than might be expected.

One of the key advantages of maximum likelihood estimation for statisticians is that it is a
convenient and reliable way of summarizing and exploring new data (Efron, 1982). It also does
not require the statistician to incorporate subjective judgements into statistical models. In short,
frequentist statistics is a lot easier than its Bayesian counterpart.

A maximum likelihood estimator will converge to the corresponding statistic as the amount of
data seen goes to infinity (although it can be biased in the finite). This makes it very attractive for
objective inquiry. However, it seems that the decision problem that learners face is more subjective.
As mentioned above, the desired model would be one that incorporates the idea that learners choose
a grammar that they believe will be most useful for them. That is, they make decisions based on
expected utility.

The following sections frame the Portuguese clitic problem in terms of Bayesian decision theory.
In this model, the decision rule will be based on the estimation of two parameters: the proportion
of GEP speakers α, and p the rate of enclisis of GClP speakers. To evaluate the decision rule we
need to define the likelihood of the data with respect to GEP and GClP (the likelihood function).
We also need to define the prior. In this case we will define the prior so that the higher the rate
of enclisis, the higher the proportion of GEP speakers is expected. The final component of the
decision rule is the utility function. This encodes the fact choosing one grammar over the other
has implications for communicating with the rest of the speech community. We also have to define
production probabilities in order to embed this decision rule into an iterated learning setting. After
all this machinery is set up, Section 5 will give the results of a simulation based on this process.

4.1 The Bayesian Decision Rule

The general form of a Bayesian decision is choosing action â from decision set Θ given an unknown
parameter θ for which one has observed data y. The goal is to maximize the expected utility of
taking action a with respect to the possible values of θ and the known values of y. That is,

â = argmaxa

∫
Θ
U(a, θ)P(θ|y)dθ.

We can formulate the problem for the parameter setting as follows. Now, let

P(parameter is on) = α.

We can interpret α as the proportion of speakers in the population who have the parameter set
on. For the Portuguese data α is the proportion of GEP speakers in the population. As above, we
assume there is only one parameter setting differentiating GEP and GClP . The only evidence the
learner has for this is frequency counts of the different syntactic constructions under consideration.
For any given parameter we have a count of inputs that support the parameter setting and a count
of those that oppose it. The task of the learner is to use these frequency counts to evaluate what
is the best grammar for them.
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4.2 The Likelihood Function

In order to calculate expected utility of choosing a particular parameter setting, we want to find
the likelihood of the data given that we have this much evidence for the parameter being ‘on’.

Let, G → {GClP , GEP } be a random variable that representing the grammar of the speaker
contributing input to the current learner. Let p = P(a2|x1, G = GClP ). That is, the probability
that a speaker of GClP utters an enclitic construction (a2) in the variational case (x1). Let SN be
the N pieces of input the learner receives. Then, what we want to evaluate is P(SN |α, p). That
is, the probability of seeing SN given that α of the population are GEP speakers and p is the rate
at which GClP speakers are producing enclitics. We can keep the simplifying assumption that each
data point is independent. So we can calculate P(SN |α, p) as N Bernoulli trials. Let, k be the
number of cases that were parseable with this parameter setting. Now, the likelihood function of
seeing data SN can be derived follows.

P(SN |α, p) =
(
N

k

)
P(a2|x1)kP(a1|x1)N−k.

=
(
N

k

)
[P(G = GClP )P(a2|x1, G = GClP ) + P(G = GEP )]k

× [P(G = GClP )P(a1|x1, G = GClP ))]N−k.

=
(
N

k

)
[(1− α)p+ (1− α)]k[(1− α)(1− p)]N−k

Now let a ∈ {0, 1} be the possible outcomes of the learner’s decision. That is, a = 1 means that
the learner sets the parameter on (GEP ) and a = 0 means that it is set off (GClP ). Note, GEP is a
subset of GClP so does not present any counter-evidence for GClP in this model. Unlike the GBM
we do not necessarily reject GEP upon hearing a single affirmative proclitic construction.

4.3 The Prior

We also need to consider the prior beliefs of the learner about possible combinations of α and p,
P(α, p). There are two points to be to addressed. First, if α = 1 then population is entirely made
up of GEP speakers. Then, the value of p is irrelevant as it only applies to GClP speakers. The
simplest hypothesis is that p = 1 is a maximum when α = 1. That is, before being wiped out
GClP would have been using enclitic constructions in increasing number to fit with the rest of the
population. Second, if α = 0 then we have a population of GClP speakers and so the rate of enclisis
should reflect the stable rate observed for Classical Portuguese. That is, the population would most
likely be using proclitic construction a large proportion of the time. So, the maxima of when α = 0
should be p = 0.05 to fit with the figures from Galves and Paixao de Sousa (2005).

In this manner, we assume a prior with density f(α, p) as shown in Figure 1. With form

f(α, p) =
1
c
e−(p−(0.95α+0.05))2

where c is a normalizing constant:

c =
∫

[0,1]2
f(α, p)d(α, p).
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f(α, p) is then just a squared Gaussian with mean 0.95α+0.05.3 This is a simplification of matters.
It allows us to express skepticism at the suggestion that remnant speakers of GClP would hold out
with high proportions of proclisis. However, clearly more could be put into this prior.
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Figure 1: The prior function, P(α, p)

4.4 The Utility Function

At this stage, we want to set out a utility function that captures two facts. First, the learner wants
to acquire the same grammar as the rest of its community. Second, the learner wants to be able to
play both roles of speaker and hearer successfully. Since EP is a subset of ClP, a speaker of ClP
will be able to understand both EP and ClP speakers without any penalty. However, a speaker
of EP will have difficulty understanding ClP speakers. Conversely, EP speakers will be able to
converse without penalty with ClP speakers but not vice-versa. Now, assume that an individual
plays speaker and hearer roles half of the time. We can now set up the utility function as follows.

U(a, α, p) =
{
−1

2α if a = 0;
−1

2(1− α) if a = 1.

3This is the rate of enclisis found in the Tycho Brahe corpus. We really just want to represent that enclisis is
available in GClP but not widely used
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That is, if the learner chooses GClP they will only potentially pay from speaker point of view. This
loss will be proportional to the size of GEP population. Similarly, choosing GEP will potentially
incur a loss from the hearer side proportional to the size of the GClP population.4

4.5 The Decision Rule

Now, the decision task for the learner is then to choose the grammar that will maximize their
expected utility. This is the crucial difference between this approach and the MAP based decision
mechanisms reviewed above. To evaluate expected utility, we need to abstract away from α and p
and instead integrate the utility function with respect to the posterior P(α, p|SN ). This represents
the fact that the learner does not actually know what α and p are. They need to infer it from fre-
quencies N and k. Instead of trying to pin this down (or stipulate it) expected utility maximization
hedges its bets. Thus we integrate over all possible values of (α, p) ∈ [0, 1]2.

E[U(a, α, p)|SN ] =
∫

[0,1]2
U(a, α, p)dP(α, p|SN ).

Now, we can simplify this using the following instantiation of Bayes rule:

P(α, p|SN ) =
P(α, p)P(SN |α, p)

P(SN )
.

So,

E[U(a, α, p)|SN ] =
∫

[0,1]2
U(a, α, p)P(SN |α, p)f(α, p)d(α, p)

Where f(p, a) is the density of the prior P(α, p) as defined above. To find out whether the parameter
should be set ‘off’, we calculate:

E[U(0, α, p)|Sn] > E[U(1, α)|Sn].

That is (disregarding constants),∫
[0,1]2

αP(Sn|α, p)P(α, p)f(α, p)d(α, p) >
∫

[0,1]2
(1− α)P(Sn|α, p)P(α, p)f(α, p)d(α, p)

This leaves us with the following concrete decision rule for this case,∫
[0,1]2

(2α− 1)P(Sn|α, p)P(α, p)f(α, p)d(α, p) < 0.

4This is the place where production difficulties should come in, but this will have to wait for further development.
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4.6 The Production Step

To investigate language change in an iterated learning fashion, we need to describe a production
step. For the Portuguese data, this primarily means dealing with meanings with more than one
construction type. As in Briscoe’s model, this does not fall out immediately from decision procedure
above. In fact, it seems reasonable to assume that production probabilities are malleable through
a lifespan.5 However, as a first step we might assume that production probabilities are derivable
from the frequencies observed in the acquisition process.

This, of course, is dependent on whether the grammar licenses the construction. So after
acquisition, a ClP speaker would have P(a1|x1) = (N − k)/N and P(a2|x1) = k/N On the other
hand, an EP speaker would have P(a2|x1) = 1. In a population analysis, we can estimate these
from the GClP /GEP proportions and the production frequencies of the first (parent) generation.
For example, let the random variable T = t∞0 represent the t-th generation. Let k0 and α0 be
the proportion of variational enclitics and the proportion of GEP speakers observed in generation 0
respectively. Then we have the following proportion of input data as enclitics in the first generation:

q0 = Ppop(a2|x1, T = 0) = (1− α0)
k0

N
+ α0.

Iterated learning proceed as follows. The first generation of learners samples its input from the
binomial distribution centered at q0.6 We can determine the proportion of speakers who will see
K = c enclitic constructions as the probability of seeing c successes in n Bernoulli trials:

P(K = c|α) =
(
N

c

)
qc(1− q)N−c.

The proportion of learners that will acquire GClP or GEP is determinable from the decision proce-
dure above. This proportion of speakers will then contribute enclitics with a rate of c/N to the next
generation. Let pcp2,t and pep2,t be the probability of enclisis (a2) coming from GClP and GEP speakers
in generation t respectively. For GClP we have different proportions learners of GClP who see c
enclitics in the learning phase who will produce enclitics a rate of c/N . The proportion contributed
by pep2,t is the entire proportion of non GClP speakers for that generation.

pcp2,t =
N∑
c=0

IClPc

(
N

c

)
qct (1− qt)N−c(c/N).

pep2,t = 1−
N∑
c=0

IClPc

(
N

c

)
qct (1− qt)N−c.

Where IClPc = 1 if the decision procedure chooses GClP when c enclitic constructions are
observed. The probability of generation t+ 1 observing an enclitic is then:

qt+1 = Ppop(a2|x1, T = t+ 1) = pcp2,t + pep2,t

5We might want to make inferences on set windows of time, for example.
6Notice the similarity to Pearl (2007)!
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This leaves asymptotic behaviour still very much in the hands of initial conditions. Perhaps a
better way to proceed would be to think of the decision rule above as a rule for deciding which
grammar to use, and hence which construction. This would fit better with models of speaker
alignment. For now, however, lets just see what this approximation leads us to.

5 A Simulation
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Figure 2: Transition diagram: Proportion of GEP speakers. Different curves represent different
GClP enclisis rates (p): 0.05 (rightmost), 0.1, 0.2, 0.5, 0.8 (leftmost), and 1. N = 100 and α = 0.

Figure 4 shows the results of a simulation varying the initial condition k0. Each simulation
ran for 300 iterations starting with a population of ClP speakers. Transition diagrams for various
enclisis rates (GClP speakers) is shown in Figure 2. This shows the expected proportion of GEP
speakers in the next time step given an existing proportion of GEP speakers. If the rate of enclisis
for the GClP population is 5%, then only fairly large surge GEP speakers in one generation (over
60% of the population) will successfully trigger a move to GEP . If the rate of GClP enclisis is
high however, for example 80%, the move to GEP is inevitable even for a pure GClP population.
Transition diagrams for overall rates of enclisis are shown in Figure 3. This shows that, in this
model, enclisis rates are fairly stable. This suggests even reasonably high rates of enclisis (e.g.
50%) will not drive any change to GEP .
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Figure 3: Transition diagram: Overall rates of enclisis. Different curves represent different input
sizes N : N = 10, 20, 50, 80, 100. α = 0

Figure 4 shows the results of iterated learning with input size N = 100, α0 = 0 (initially
all GClP ) and initial levels of GClP enclisis varying between 60% and 70%. Figure 5 shows the
corresponding rates of GClP enclisis through the simulation. The jump seems to occur between
k = 63 and k = 64. The former predicts that the population will stay purely ClP speakers. The
latter, however, shows that sharp rise in the rate of enclisis at around 200 generations. If the initial
rate of enclisis is higher than this, then converge on EP is inevitable in this system.

According to the actual frequencies observed in the Tycho Brahe corpus (Galves and Paixao de
Sousa, 2005), rates of enclisis were around 0.05 in the classical period. According to the model
above, this would not lead an increase in enclisis. Indeed, this is assumed by the prior, so the
stability of GClP is really assumed by the model. Crucially, the the simulation above still does not
incorporate the effects of simultaneous change in other modules of language (e.g. phonology). It
is possible that an external shock could be enough to move the rate of enclisis to the point where
increase becomes inevitable. Studies of the Portuguese data suggest that this was actually the case.

The model also ignores changes in production after the acquisition period. To account for these
factors, we could define a new decision problem that estimates production probabilities. This would
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Figure 4: Iterated Learning: Proportions of GEP speakers. N = 100, α0 = 0, and the initial rate
of GClP enclisis, p, ranges from 0.6 to 0.7 (fastest convergence to α = 1).

give weights to constructions derived from other modules of the language. This process would run
in parallel and beyond grammar acquisition.

Clearly there are also clearly many details that need to be teased out. For example, we also
need a more linguistically realistic view of the prior. However, this is not really something that
should prevent a Bayesian approach to this problem. Moreover, the Bayesian framework provides
a clearer framework for dealing with these hard but necessary components such as the prior.

6 Conclusion

This paper has reviewed a number of approaches to iterated learning. These have been viewed in
the light of the history of Portuguese clitic placement. The loss of proclisis in affirmative contexts
has been analyzed as the change in a single parameter setting by Galves and Galves (1995). This
makes it a convenient testing ground for models of language change. The approaches reviewed
generally relied on maximum likelihood estimation. That is, matching of observed frequencies to
parameterized models of language. In Niyogi and Berwick (1998), the probabilities of licit construc-
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Figure 5: Iterated Learning: Rate of enclisis. n = 100, α0 = 0, and the initial rate of GClP enclisis,
k/N , ranges from 0.6 to 0.7 (fastest convergence to p = 1.

tions actually defined the language alongside actual categorical parameter settings. The problems
arising from this were mitigated slightly by using a Bayesian approach to iterated. However, the
BIL procedures described by Kirby et al. (2007), for example, still rely on point estimation (via
the MAP criterion) than true Bayesian learning.

In general, it seems that pure frequency fitting is not quite the right approach to this problem.
In fact, the outcome is categorical - the learner chooses a discrete grammar.7 This sort of problem
falls fairly solidly in the realm of decision theory. The acquisition procedure of Briscoe (2002)
reaches for this by putting more emphasis on modelling the changing beliefs of the learner given
the input data. However, his implementation does not have a clear relationship with Bayes rule.
Moreover, all of the approaches reviewed above lack a notion of utility. It is certainly treated as
crucial in Bayesian decision theory.

Once we decide to change the task from estimation to decision making, the case for a Bayesian
approach becomes much stronger. Bayesian decision theory has been shown to subsume frequentist
decision theory. Whether or not this works in practice depends on how able we are at meeting the

7Or possibly a set of grammars (Kroch, 2000).
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demands of a subjectivist theory. As a first step, I have outlined new version of Bayesian iterated
learning. Here, the acquisition procedure is an attempt to capture Briscoe’s procedure in a more
transparently Bayesian way. It also incorporates the idea of utility into the procedure. However,
in order to complete the IL production step, we need to reformulate production probabilities in a
more sensible manner.

The simple model presented assumed agents in IL simply used the frequencies from the acqui-
sition phase. This is clearly not enough. This needs a better grounding in what we know about
production frequencies change during a lifespan. It also needs to be able to incorporate input from
other modules. Only then will be able to test claims, as that of Galves and Galves, that syntactic
change can be driven by prosody for example. The next obvious step is to incorporate an measure
of production difficulty into the utility function. This parameter can then be estimated with respect
to the corpus data as presented by Galves and Paixao de Sousa (2005). However, the correct way
of fitting the output of the model to the data is not obvious and requires more attention. It is also
clear that a more careful linguistic attention needs to be devoted to the development of the prior.

There is evidently a lot more work to be done. Both in differentiating between prosodic change
and true syntactic change, and in developing a better model of testing this. Hopefully the Bayesian
approach to the latter can help the former.
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