# The Importance of Optimal Parameter Setting for Pitch Extraction



### Introduction

- Many studies have compared the performance of different F0 extraction algorithms
- In these studies the pitch extraction parameters may not be given ideal settings
- For example, a recent study showed that SWIPE' and SHS outperformed all other algorithms, but the experiment used unrealistic values for the pitch floor (40 Hz) and pitch ceiling (800 Hz) parameters
- This study compares 5 standard F0 extraction algorithms using optimized values for these two parameters

## Speech Corpora

- 1. FDA: Fundamental Frequency Determination Algorithm Evaluation Database [1]
- 50 sentences read by one male and one female speaker
- 37 declaratives and 13 interrogatives (4 yes/no questions and 9 wh-questions)
- 2. Keele Pitch Database [2]
  - "The North Wind and the Sun" read by 10 speakers
  - 5 females and 5 males

## Corpus Statistics

| Corpus | Speakers | Total Dur.   | Mean Utt. Dur. | # Measurements |
|--------|----------|--------------|----------------|----------------|
| FDA    | 2        | 5 min 32 sec | 3.32 sec       | 18,098         |
| Keele  | 10       | 5 min 37 sec | 33.7 sec       | 11,527         |

# Before Parameter Optimization



- Example using the CC method for the speaker *f1* from the Keele corpus
- Default pitch floor and ceiling values produce many gross errors

# Keelan Evanini<sup>1</sup>, Catherine Lai<sup>2</sup>

Educational Testing Service<sup>1</sup>, University of Pennsylvania<sup>2</sup>

#### F0 Extraction Methods

| Method | Full Name                                  | Source    |
|--------|--------------------------------------------|-----------|
| SWIPE' | Sawtooth Waveform Inspired Pitch Estimator | [3]       |
| SHS    | Sub-Harmonic Summation                     | Praat [4] |
| AC     | Auto-Correlation                           | Praat [4] |
| CC     | Cross-Correlation                          | Praat [4] |
| RAPT   | Robust Algorithm for Pitch Tracking        | ESPS [5]  |

## Methodology

- F0 measurements were extracted from 2 corpora with Electroglottograph (EGG) measurements using 5 standard algorithms
- $\bullet$  F0 measurements first extracted using 75 Hz for pFloor and 600 Hz for pCeiling
- Then, the optimal pitch floor and ceiling parameters were obtained following the pre-processing procedure in [6]:
- 1. Default pFloor and pCeiling values are used to obtain the values of the 35th and 65th quantiles

2. 
$$pFloor = q35 * 0.72 - 10$$
  
3.  $pCeiling = q65 * 1.90 + 10$ 

- Performance evaluated using Gross Error Rate, GER, (predicted values that differ from the reference EGG value by > 20%) and RMSE
- Analysis only includes frames that all algorithms predict as voiced

## After Parameter Optimization



- Parameter optimization sets pitch floor to 125 Hz and pitch ceiling to 390 Hz
- Gross errors are eliminated

#### Overall GER Results



#### Male GER Results



#### Female GER Results



## RMSE Results

| FDA corpus: |         |      |      |      |        |      |
|-------------|---------|------|------|------|--------|------|
| Method      | Overall |      | Male |      | Female |      |
| Meniou      | Def.    | Opt. | Def. | Opt. | Def.   | Opt. |
| SWIPE'      | 8       | 7.7  | 3.0  | 3.0  | 9.3    | 8.9  |
| SHS         | 8.8     | 9.9  | 3.1  | 2.7  | 10.1   | 11.7 |
| AC          | 10.3    | 7.5  | 2.5  | 2.5  | 12.0   | 8.8  |
| CC          | 11.8    | 7.4  | 3.1  | 3.2  | 13.7   | 8.6  |
| RAPT        | 11.9    | 11.5 | 3.6  | 3.5  | 13.8   | 13.5 |

| Keele corpus: |         |      |      |      |        |      |
|---------------|---------|------|------|------|--------|------|
| Method        | Overall |      | Male |      | Female |      |
| Method        | Def.    | Opt. | Def. | Opt. | Def.   | Opt. |
| SWIPE'        | 5.2     | 5.2  | 3.7  | 3.7  | 6.0    | 6.3  |
| SHS           | 7.6     | 6.8  | 7.1  | 5.5  | 7.8    | 7.8  |
| AC            | 8.4     | 5.6  | 3.6  | 4.1  | 10.6   | 6.7  |
| CC            | 10.4    | 5.7  | 4.3  | 4.3  | 13.1   | 6.7  |
| RAPT          | 7.3     | 6.6  | 4.4  | 4.0  | 8.7    | 8.2  |

## Summary

- All algorithms perform better on male speech than female speech
- Optimization of *pFloor* and *pCeiling* parameters improves (or does not change) the overall GER for all algorithms in both corpora
- GER ranges after parameter optimization are 0.1% 0.3% for FDA and 0.2% 0.4% for Keele
- All F0 extraction algorithms perform similarly when parameter optimization is applied

#### References

- [1] Paul Bagshaw, *Automatic prosodic analysis for computer aided pronunciation teaching*, Ph.D. thesis, University of Edinburgh, 1994.
- [2] F. Plante, G.F. Meyer, and W.A. Ainsworth, "A pitch extraction reference database," in *Proc. Eurospeech*, 1995.
- [3] Arturo Camacho, SWIPE: A Sawtooth Waveform Inspired Pitch Estimator for Speech and Music, Ph.D. thesis, University of Florida, 2007.
- [4] Paul Boersma and David Weenick, "Praat: Doing phonetics by computer, version 5.0.38," http://www.praat.org, 2010.
- [5] David Talkin, "A Robust Algorithm for Pitch Tracking (RAPT)," in *Speech Coding and Synthesis*, W.B. Kleijn and K.K. Paliwal, Eds., pp. 495–518. Elsevier, 1995.
- [6] Céline De Looze and Stéphane Rauzy, "Automatic detection and prediction of topic changes through automatic detection of register variations and pause duration," in *Proc. Interspeech*, 2009.