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Abstract

Infant-directed speech (IDS) is characterized by exaggerated
intonation patterns and short, simple phrases.  Because these
exaggerated intonation patterns frequently convey a small,
stereotyped range of emotional signals, we might expect
particular words, like good  or no , to be realized with
consistent pitch contours.  This consistency in a word’s pitch
realization might facilitate word recognition, but in an
intonation language like English, it could falsely suggest
lexical tones, i.e., pitch variation signaling lexical contrast.
The present work examines the speech input to the English-
learning child to identify the amount, nature, and sources of
pitch variation across about 3,300 tokens of 8 highly frequent
words. We find two basic results.  First, although intonation
in IDS is prototypically exaggerated, about half the instances
of frequently occurring, utterance-final words were flat in
contour.  Second, although each frequent word varied
substantially in its intonation contours (e.g., rises versus rise-
falls), there were large differences among words that seem to
reflect the pragmatic categories typical of each word’s use.
For instance, no was generally flat or falling, and consistently
low in pitch, reflecting its occurrence in prohibitive
utterances; while good occurred more often with a rise-fall
contour, reflecting its approbational meaning.  Even the word
good, however, still had more flat contours than rise-fall
contours.  This within-word variability in pitch realization
could help the child rule out lexical tone as contrastive in
English.
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Introduction
Pitch is exploited in social interactions across the animal
kingdom.  Because larger organisms tend to produce lower
sounds, many species use low or steeply falling pitch as an
expression of dominance, and higher pitch for
submissiveness or uncertainty (Ohala, 1994).  Ohala (1984)
argues that languages often capitalize on this link to express
certainty (e.g., statements) through falling or low intonation,
and uncertainty (e.g., questions) through high or rising
intonation.

Pitch also plays an important role in early human
development.  The distinctive pitch characteristics of infant-
directed speech (IDS) complement the infant’s developing

auditory system; the higher fundamental frequency (F0)
mean and wider F0 range make the speech more interesting
and easier for the developing auditory system to tune in to
(Fernald, 1992). Infants prefer listening to IDS over adult-
directed speech (ADS; Fernald, 1985), a preference driven
primarily by IDS’s pitch characteristics (Fernald & Kuhl,
1987; Katz, Cohn, & Moore, 1996).  Pragmatic functions of
speech are expressed more clearly in IDS than in ADS.
Fernald (1989) elicited utterances from mothers, intended to
(1) get their infant’s attention, (2) show approval, (3)
comfort the infant, or (4) prohibit the infant from touching
an object.  Comforting utterances and prohibitions were
both low in pitch and falling, but prohibitions fell more
sharply and were shorter and higher in amplitude.
Attention-getting and approving utterances both had high
mean F0 and a large F0 range, but attention-getting
utterances were higher in amplitude. Considering the clarity
of intonational meaning in IDS, it’s not surprising that
infants respond to the emotional information conveyed by
pitch variation before they know many words (Moore,
Spence, & Katz, 1997).

In spite of the early importance of intonation for capturing
infants’ attention and conveying emotions and intentions,
infants learning English must disregard lexical pitch in order
to successfully learn and recognize words.  By 9 months,
English learners fail to discriminate a Thai lexical tone
contrast (Mattock et al., 2007).  And by 30 months, English
learners know that pitch cannot distinguish words in English
(Quam & Swingley, 2007). But figuring this out could be
difficult if the intonational and syntactic simplicity of IDS
leads highly frequent words to be realized with one
consistent pitch contour.  Is this the case for English?

To answer this question, we examine the pitch contours of
highly frequent words in mothers’ speech to their preverbal
infants.  By measuring the F0 characteristics of these words
across tokens, we attempt to determine how the pitch
structure of English conveys the lack of lexical tones.  We
might expect the pitch patterns across tokens of words to be
more variable in English than in a lexical-tone language,
where the pitch contour is specified in the word
representation. The amount of variability across tokens
could thus tell the infant which type of language she is
learning.  Knowing whether the pitch realizations of words
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like good  and no  in English IDS display variability or
consistency requires distributional analysis of the input to
children.

Distributional analyses of both partially scripted  (Kuhl &
Andruski, 1997; Werker et al., 2007) and synthetic (Maye,
Werker, & Gerken, 2002) speech have shed light on the
acquisition of vowels and consonants.  Similarly, examining
the input can tell us what cues children might use to learn
the pitch structure of their language.  Gauthier, Shi, and Xu
(2007), for example, showed that an unsupervised learning
algorithm acquired the lexical-tone categories of Mandarin
using either the F0 contours or velocity profiles (first
derivative of F0) of syllables.  The biggest limitation of
most existing distributional analyses is their reliance on
small, laboratory-produced corpora that may exhibit limited
variation relative to children’s ordinary experience.  Here, in
contrast, we use an automatic method of locating word
boundaries to investigate a large, naturalistically produced
corpus of mothers’ speech to their infants (Brent & Siskind,
2001).

Methods
The Brent corpus (Brent & Siskind, 2001) from the
CHILDES database (MacWhinney, 2000) is an unusually
large and rich dataset for analyzing the pitch patterns of
highly frequent words in IDS.  The corpus contains about
100 hours of speech produced, in a naturalistic setting, by 16
mothers to their young infants, aged 9 to 15 months.  There
is a word transcription for each utterance, including the
utterance start and end times.  To evaluate the pitch patterns
of individual words, we located word boundaries by forced
alignment using HTK1 and the CMU pronunciation
dictionary.2  We downsampled the sound files to 22,000 Hz,
because the files had used two different sampling rates:
24,000 and 22,050 Hz.  Then we trained Gaussian Mixture
Model–based, monophone Hidden Markov models (HMMs)
on 39 Mel Frequency Cepstral Coefficients (MFCCs)
extracted from the sound files.  The HMMs were adapted to
each speaker using only that speaker’s data.  We excluded
utterances from the training and our analysis when they
either contained an infrequent word not in the dictionary
(although frequent out-of-dictionary words were added to
the dictionary by hand), or had been transcribed as noisy,
sung, or whispered.  This excluded roughly 6,000 of the
over 126,000 utterances.

Once the HTK word boundaries were sufficiently
accurate, we extracted the F0 samples for each word using
Praat (Boersma, 2001), and converted each sample to the
Mel scale,3 which approximates human pitch perception.
Each token’s pitch samples were z-normalized using the

                                                  
1 http://htk.eng.cam.ac.uk/, version 3.3.
2 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
3 Mel = 1127 loge(1 + f(Hz)/700); Stevens & Volkmann, 1940

speaker’s overall mean and standard deviation4 to control
for effects of the particular speaker’s pitch characteristics.
Outlying pitch samples in each token’s pitch track (i.e.,
measurement error) were excluded.5 Then, for all words in
the corpus, we calculated the F0 mean, F0 range, and  the
location of the F0 maximum and minimum.  Further
analysis focused on word tokens, from a subset of word
types, in utterance-final position in statements.

Results
We first consider the F0 patterns of 23 highly frequent
content words.  Even in lexical-tone languages, the
realization of a word’s pitch is distorted by context (Xu,
1994).  To reduce this distortion, we restricted our analysis
to words occurring in final position in statements.
(Statements are defined here as utterances transcribed with a
period, versus a question mark or exclamation point.)  The
number of remaining tokens for each word type ranged from
150 to 1650.  Figure 1 illustrates the large variation across
the 23 words in their mean F0 ranges (plotted in Hertz for
interpretability).  For example, good has a mean F0 range of
135 Hz, while now has a much lower mean range, 66 Hz.

To investigate the nature and sources of the F0 variation
across words, we examined 8 of the 23 words in more detail.
These 8 words—good, no, up, down, ball, book, right, and
okay—have meanings and lexical/pragmatic contexts that
lead to interesting predictions about their F0 realizations.
(See Appendix for detail on lexical contexts.)  Good usually
expresses approval (of the child’s behavior, a taste or smell,
etc.), while no usually chastises or warns the child.
Accordingly, we expect good to occur with higher mean F0
and more rise-fall contours, while no should be low and flat
or falling.  The different meanings of up and down might
influence their F0 patterns.  In a manner analogous to tone
or word painting in music (where composers fit the melody
to the words of a song, for instance, jumping to a high note
on the word up), up might be uttered with a higher mean F0
than down.  Ball and book, both concrete nouns, occur in
similar lexical contexts that might suggest a predominance
of rise-fall contours.  Right should behave similarly to good,
since the mother is usually expressing excitement or praise.
Finally, okay usually appears in comforting utterances, e.g.,
“You’re okay” or “It’s okay,” so we expect its F0 realization
to be low and gently falling.

                                                  
4 Z-score = (M – F0) / SD.  Mean F0s for the 16 mothers ranged
from 207 to 280 Hz (mean: 250 Hz), and standard deviations
ranged from 72 to 99 Hz (mean: 89 Hz).
5 We excluded any pitch values falling outside the whiskers.
Whiskers were calculated for each token using the following
equations:  Whisker 1 = Q1 – 1.5 * (Q3 – Q1); Whisker 2 = Q3 –
1.5 * (Q3 – Q1).  Q1 and Q3 are the first and third quartiles (which
define the interquartile range, the middle 50% of values).
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Figure 1:  Pitch range for each word, plotted in Hertz for interpretability (though our analysis used the Mel scale).
Means (bar heights), with their 95 % confidence intervals (vertical lines), and medians (circles) are plotted.

 

Normalized Time

Figure 2: F0 plots (speaker-normalized Mels) for 8 highly
frequent words.  These tokens are all 0.3-0.4 seconds long,
so they fall roughly in the middle 20%.

              

 

Figure 3: The standard deviation threshold.  Varying the
threshold affects the proportion of flat tokens for each word,
but the differences between the words are evident within a
large range of thresholds.  We used the threshold 0.275,
indicated by the vertical line.

The easiest way to get a first impression of a word’s
distribution of F0 realizations is to look at each word
token’s F0 samples plotted over time.  Figure 2 shows pitch
plots for a subset of the tokens that we analyzed (but similar
results obtain for longer and shorter durations).  For plotting
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purposes, each token’s duration was normalized by taking
11 evenly spaced samples from the original pitch track. The
F0 plots generally support our predictions.  Good has more
tokens with rise-fall contours, large F0 ranges, and high F0
means, while the no tokens are almost all low and flat.    The
up tokens have higher, more variable means than the down
tokens. Surprisingly, ball appears to have slightly more rise-
fall contours than book. Finally, right seems to have more
rise-fall contours than okay, while okay has more falling
tokens.
  To quantify the differences between the 8 words, we first
divided tokens into the categories flat versus contoured.  We
used the standard deviation (SD) of each token’s F0
samples: if it fell above 0.275, the token was categorized as
contoured; otherwise, it was characterized as flat.  Figure 3
demonstrates that the particular SD threshold mainly affects
the proportions of flat versus contoured tokens rather than
the distributions of different contour types.  At any
particular SD threshold within a reasonable range, the same
differences between words like good and no emerge.  We
then further categorized contoured tokens as falls, rises,
rise-falls, fall-rises, or complex. We first normalized each
token’s list of pitch samples by its length, then divided the
normalized duration into three regions: the start (t ≤ 3); the
middle (3 < t ≤ 7), and the end (t > 7). If the F0 maximum
occurred in the first region (near the start of the word) and
the F0 minimum occurred in the third region (near the end),
the token was categorized as falling.  Conversely, rises had
minima at the beginning and maxima at the end.  Rise-falls
had maxima in the middle and minima on either end, while
fall-rises were the opposite: minima in the middle and
maxima on either end.  Finally, tokens that fell into none of
these categories were deemed complex. Figure 4 illustrates
the three regions and example contours of each type.

By describing each token as falling, rising, etc., we can
compare the 8 words’ distributions of contour types. Table 1
displays, for each word, the proportion of tokens categorized
in each contour type, and the average mean F0 (converted to
Mels, and z-normalized to control for each mother’s pitch
characteristics). The first thing to notice is the prevalence of
flat tokens across all the word types, which is surprising
considering that we excluded utterance-initial and utterance-
medial tokens (which we would expect to be flatter than
utterance-final tokens).

The contour-type distributions and F0 means in Table 1
mostly reflect the patterns observed in the F0 plots from
Figure 2.  No has more flat tokens, while good has more
rise-falls and a higher mean F0; up has a higher mean F0
and more rises, while down has more falls; and ball has
more rise-falls, while book has more flat tokens.  Right
looks strikingly similar to good, while okay has the most
falling tokens of any word.

Unexpectedly, up has slightly more flat tokens than no.
Since no occurs in prohibitive utterances, it should have
more flat contours than the other words.  In addition to a flat
shape, however, we also expect no to have low mean F0s.
The F0 plots in Figure 2, and the average F0 mean for each
word (see Table 1), suggest the flat tokens of up  have

higher, more variable F0 means than the flat tokens of no.
Figure 5 confirms this, comparing the distribution of F0
means for the flat tokens of up versus no.  As predicted, no’s
F0 means are more tightly clustered around lower values.
Though up resembles no in its proportion of flat contours,
no is unique in the consistency of its low mean F0.

Figure 4: Examples of the five contour types.  Each token is
assigned a contour type using the location of its maximum
and minimum F0 values.

Table 1: Contour-type distribution and average F0 mean (in
Mels and z-normalized) for each word.  For contour type,
values greater than 0.15 are highlighted.

         

Figure 5: The distribution of mean F0 values for flat tokens
of no versus up . The x-axes show mean F0 (in z-scored
Mels).  The y-axes show the frequency of occurrence. Flat
tokens of no, used in prohibitions, are lower and more
homogeneous in their F0 means.
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Discussion
Though the 8 highly frequent words we investigated differed
in their distributions of contour types, F0 means, and F0
ranges, the lack of one consistent pitch pattern within each
word may cue the child that English word representations
are not specified for tone.

The distributions of contour types for the words good, no,
up, down, ball, book, right, and okay generally reflect the
pragmatic functions of the utterances each word occurs in.
Good and right often occur with a rise-fall contour,
consistent with their approving function.  In contrast, no,
used in prohibitions, has predominantly flat or falling
contours with low mean F0s.  The opposing meanings of up
and down are reflected in the higher proportion of rising
contours for up and of falling contours for down, and in up’s
higher mean F0s. Though up, surprisingly, had a slightly
higher proportion of flat tokens than no did, the flat n o
tokens had lower and less variable F0 means. The higher
proportion of rise-falls for ball, and of flat tokens for book,
could reflect differences in the pragmatic contexts the words
occur in; book may occur more frequently in calm, routine
contexts, while ball may be uttered in more exciting,
attention-getting contexts.  For the word okay, we expected
a large proportion of falling contours, given its comforting
function. Though okay had the highest proportion of falling
contours of any word, it was probably underestimated: the
child’s loud crying in comforting utterances often led to
their exclusion.

Though the 8 words differ in their pitch characteristics,
they also exhibit large within-word variability.  Even for
right, good, and okay, which occur in highly stereotyped
contexts (see Appendix), the predominant contour is still
flat, just as it is for no.  The range of contour types within
each word could cue the child that English word
representations do not include tone.  On the other hand, the
consistent pitch realization of the word no—a crucial word
to learn—probably facilitates recognition. (Changing the
gender of the talker impairs young children’s recognition of
words, probably in large part because of the change in
fundamental frequency; Singh, Morgan, & White, 2004.)

A natural next step for this research is to compare these
results with the pitch contours of highly frequent words in
the IDS of a lexical-tone language.  Though the large
within-word variability we found may cue the child that
pitch is not used lexically, we do not yet know how the
variability in English compares with variability in tone
languages.   Evidence for how reliably lexical tones are
realized is unclear, with some results suggesting tones are
not distorted by the exaggerated intonation of IDS (Liu,
Tsao, & Kuhl, 2007; Kitamura et al., 2002), and others
suggesting tones are distorted by IDS prosody (Papousek &
Hwang, 1991).  Further comparative study of multiple
languages with different linguistic descriptions will help
define the learning problem children face.

At present, scientific understanding of phonological
development has proceeded almost entirely by empirically
confirming children’s gradual adaptation to language norms,

with those norms described in very general terms. Such
experiments testing the development of perception and
production in children have revealed some of the
extraordinary capabilities of infants to interpret and learn
from the speech signal.  But understanding the learning
process in any detail will require moving beyond
oversimplified, schematic descriptions of the information
available to the learner.  If we do not characterize the
complexity and variation of the signal provided to children,
we risk significantly underestimating children’s ability, and
distorting the nature of the developmental process.  The
present work provides a first step in furnishing the sort of
quantitative description that will be needed for a full
account of children’s language learning.
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Appendix:  Typical lexical contexts
Good:  “…very good” (106 tokens); “…so good” (46);

“…that’s good” (36); “…mmmm good” (29); “…it’s
good” (27).

No:  “…no no” (607); “…oh no” (133).
Ball:  “…the ball” (98); “…your ball” (35).
Book:  “…this book” (32); “…the book” (28); “…a book”

(25); “…your book” (23).
Up:  “…it up” (60); “…you up” (54); “…stand up” (15);

“…clean(ed) up” (23).
Down:  “…fall/fell down” (57); “…sit down” (30);

“…upside down” (20); “…get down” (17).
Right:  “…that’s right” (464); “you’re right” (15).
Okay:  “…it’s okay” (147); “…you’re okay” (41); “…that’s

okay” (32).
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